Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Mareczko
1
67 kgMalucelli
2
68 kgGibson
3
76 kgHindsgaul
4
67 kgRajović
5
74 kgFedeli
6
65 kgPerry
7
71 kgde Kleijn
8
68 kgWeulink
10
62 kgWirtgen
13
63 kgMurphy
14
67 kgTagliani
15
70 kgLauk
16
69 kgMulubrhan
17
60 kgTeggart
18
63 kgLonardi
20
70 kgZanoncello
21
64 kgNieto
22
58 kgTonelli
23
64 kgKretschy
25
63 kg
1
67 kgMalucelli
2
68 kgGibson
3
76 kgHindsgaul
4
67 kgRajović
5
74 kgFedeli
6
65 kgPerry
7
71 kgde Kleijn
8
68 kgWeulink
10
62 kgWirtgen
13
63 kgMurphy
14
67 kgTagliani
15
70 kgLauk
16
69 kgMulubrhan
17
60 kgTeggart
18
63 kgLonardi
20
70 kgZanoncello
21
64 kgNieto
22
58 kgTonelli
23
64 kgKretschy
25
63 kg
Weight (KG) →
Result →
76
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | MALUCELLI Matteo | 68 |
3 | GIBSON Matthew | 76 |
4 | HINDSGAUL Jacob | 67 |
5 | RAJOVIĆ Dušan | 74 |
6 | FEDELI Alessandro | 65 |
7 | PERRY Benjamin | 71 |
8 | DE KLEIJN Arvid | 68 |
10 | WEULINK Meindert | 62 |
13 | WIRTGEN Luc | 63 |
14 | MURPHY Kyle | 67 |
15 | TAGLIANI Filippo | 70 |
16 | LAUK Karl Patrick | 69 |
17 | MULUBRHAN Henok | 60 |
18 | TEGGART Matthew | 63 |
20 | LONARDI Giovanni | 70 |
21 | ZANONCELLO Enrico | 64 |
22 | NIETO Edgar | 58 |
23 | TONELLI Alessandro | 64 |
25 | KRETSCHY Moritz | 63 |