Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Lonardi
1
70 kgVan den Bossche
2
63 kgde Vries
3
66 kgPiganzoli
4
61 kgGovekar
5
73 kgVan Rooy
8
70 kgWilksch
9
62 kgVerwilt
10
76 kgFancellu
12
62 kgUhlig
13
69 kgZambanini
14
62 kgThalmann
16
61 kgMonk
17
67 kgDe Rossi
18
70 kgPlowright
19
80 kgBudyak
20
53 kgAmann
24
76 kgZanoncello
25
64 kgSousa
27
61 kgMeiler
28
65 kg
1
70 kgVan den Bossche
2
63 kgde Vries
3
66 kgPiganzoli
4
61 kgGovekar
5
73 kgVan Rooy
8
70 kgWilksch
9
62 kgVerwilt
10
76 kgFancellu
12
62 kgUhlig
13
69 kgZambanini
14
62 kgThalmann
16
61 kgMonk
17
67 kgDe Rossi
18
70 kgPlowright
19
80 kgBudyak
20
53 kgAmann
24
76 kgZanoncello
25
64 kgSousa
27
61 kgMeiler
28
65 kg
Weight (KG) →
Result →
80
53
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | LONARDI Giovanni | 70 |
2 | VAN DEN BOSSCHE Fabio | 63 |
3 | DE VRIES Hartthijs | 66 |
4 | PIGANZOLI Davide | 61 |
5 | GOVEKAR Matevž | 73 |
8 | VAN ROOY Kenneth | 70 |
9 | WILKSCH Hannes | 62 |
10 | VERWILT Mauro | 76 |
12 | FANCELLU Alessandro | 62 |
13 | UHLIG Henri | 69 |
14 | ZAMBANINI Edoardo | 62 |
16 | THALMANN Roland | 61 |
17 | MONK Cyrus | 67 |
18 | DE ROSSI Lucas | 70 |
19 | PLOWRIGHT Jensen | 80 |
20 | BUDYAK Anatoliy | 53 |
24 | AMANN Dominik | 76 |
25 | ZANONCELLO Enrico | 64 |
27 | SOUSA José | 61 |
28 | MEILER Lukas | 65 |