Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 92
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Vandenbroucke
1
67 kgBallerini
3
78 kgD'Hollander
4
74 kgVerheyen
6
68 kgLiese
16
75 kgMühlbacher
22
68 kgLangl
23
66 kgBuxhofer
25
70 kgGrabsch
27
81 kgPadrnos
28
81 kgKlöden
31
63 kgOrdowski
33
59 kgAerts
43
68 kgStam
47
64 kgVansevenant
49
65 kgVan Bondt
52
71 kgLontscharitsch
55
70 kgVanderaerden
62
74 kgvan der Steen
67
70 kgLeysen
79
75 kgBeuchat
86
62 kg
1
67 kgBallerini
3
78 kgD'Hollander
4
74 kgVerheyen
6
68 kgLiese
16
75 kgMühlbacher
22
68 kgLangl
23
66 kgBuxhofer
25
70 kgGrabsch
27
81 kgPadrnos
28
81 kgKlöden
31
63 kgOrdowski
33
59 kgAerts
43
68 kgStam
47
64 kgVansevenant
49
65 kgVan Bondt
52
71 kgLontscharitsch
55
70 kgVanderaerden
62
74 kgvan der Steen
67
70 kgLeysen
79
75 kgBeuchat
86
62 kg
Weight (KG) →
Result →
81
59
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | VANDENBROUCKE Frank | 67 |
3 | BALLERINI Franco | 78 |
4 | D'HOLLANDER Glenn | 74 |
6 | VERHEYEN Geert | 68 |
16 | LIESE Thomas | 75 |
22 | MÜHLBACHER Thomas | 68 |
23 | LANGL Andreas | 66 |
25 | BUXHOFER Matthias | 70 |
27 | GRABSCH Ralf | 81 |
28 | PADRNOS Pavel | 81 |
31 | KLÖDEN Andreas | 63 |
33 | ORDOWSKI Volker | 59 |
43 | AERTS Mario | 68 |
47 | STAM Danny | 64 |
49 | VANSEVENANT Wim | 65 |
52 | VAN BONDT Geert | 71 |
55 | LONTSCHARITSCH Josef | 70 |
62 | VANDERAERDEN Eric | 74 |
67 | VAN DER STEEN Niels | 70 |
79 | LEYSEN Bart | 75 |
86 | BEUCHAT Roger | 62 |