Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight + 724
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Vandenbroucke
1
67 kgBuxhofer
3
70 kgD'Hollander
4
74 kgVerheyen
5
68 kgBallerini
990
78 kgLiese
990
75 kgLeysen
990
75 kgPadrnos
990
81 kgVanderaerden
990
74 kgLontscharitsch
990
70 kgLangl
990
66 kgvan der Steen
990
70 kgKlöden
990
63 kgMühlbacher
990
68 kgGrabsch
990
81 kgOrdowski
990
59 kgAerts
990
68 kgStam
990
64 kgVansevenant
990
65 kgVan Bondt
990
71 kgBeuchat
990
62 kg
1
67 kgBuxhofer
3
70 kgD'Hollander
4
74 kgVerheyen
5
68 kgBallerini
990
78 kgLiese
990
75 kgLeysen
990
75 kgPadrnos
990
81 kgVanderaerden
990
74 kgLontscharitsch
990
70 kgLangl
990
66 kgvan der Steen
990
70 kgKlöden
990
63 kgMühlbacher
990
68 kgGrabsch
990
81 kgOrdowski
990
59 kgAerts
990
68 kgStam
990
64 kgVansevenant
990
65 kgVan Bondt
990
71 kgBeuchat
990
62 kg
Weight (KG) →
Result →
81
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | VANDENBROUCKE Frank | 67 |
3 | BUXHOFER Matthias | 70 |
4 | D'HOLLANDER Glenn | 74 |
5 | VERHEYEN Geert | 68 |
990 | BALLERINI Franco | 78 |
990 | LIESE Thomas | 75 |
990 | LEYSEN Bart | 75 |
990 | PADRNOS Pavel | 81 |
990 | VANDERAERDEN Eric | 74 |
990 | LONTSCHARITSCH Josef | 70 |
990 | LANGL Andreas | 66 |
990 | VAN DER STEEN Niels | 70 |
990 | KLÖDEN Andreas | 63 |
990 | MÜHLBACHER Thomas | 68 |
990 | GRABSCH Ralf | 81 |
990 | ORDOWSKI Volker | 59 |
990 | AERTS Mario | 68 |
990 | STAM Danny | 64 |
990 | VANSEVENANT Wim | 65 |
990 | VAN BONDT Geert | 71 |
990 | BEUCHAT Roger | 62 |