Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Riccò
1
57 kgGreipel
2
80 kgSchär
3
78 kgSella
4
54 kgSwift
5
69 kgBenetseder
6
65 kgPardilla
7
65 kgBrown
8
76 kgCannone
9
75 kgPossoni
10
56 kgNapolitano
11
81 kgMachado
12
63 kgMaes
13
78 kgAugustyn
14
65 kgColli
15
73 kgGusev
16
67 kgCheula
17
62 kgPiechele
18
71 kgDenifl
19
65 kgWeissinger
20
74 kgNoè
22
65 kgSentjens
23
75 kgOvechkin
25
61 kgImpey
26
72 kg
1
57 kgGreipel
2
80 kgSchär
3
78 kgSella
4
54 kgSwift
5
69 kgBenetseder
6
65 kgPardilla
7
65 kgBrown
8
76 kgCannone
9
75 kgPossoni
10
56 kgNapolitano
11
81 kgMachado
12
63 kgMaes
13
78 kgAugustyn
14
65 kgColli
15
73 kgGusev
16
67 kgCheula
17
62 kgPiechele
18
71 kgDenifl
19
65 kgWeissinger
20
74 kgNoè
22
65 kgSentjens
23
75 kgOvechkin
25
61 kgImpey
26
72 kg
Weight (KG) →
Result →
81
54
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | RICCÒ Riccardo | 57 |
2 | GREIPEL André | 80 |
3 | SCHÄR Michael | 78 |
4 | SELLA Emanuele | 54 |
5 | SWIFT Ben | 69 |
6 | BENETSEDER Josef | 65 |
7 | PARDILLA Sergio | 65 |
8 | BROWN Graeme Allen | 76 |
9 | CANNONE Donato | 75 |
10 | POSSONI Morris | 56 |
11 | NAPOLITANO Danilo | 81 |
12 | MACHADO Tiago | 63 |
13 | MAES Nikolas | 78 |
14 | AUGUSTYN John-Lee | 65 |
15 | COLLI Daniele | 73 |
16 | GUSEV Vladimir | 67 |
17 | CHEULA Giampaolo | 62 |
18 | PIECHELE Andrea | 71 |
19 | DENIFL Stefan | 65 |
20 | WEISSINGER René | 74 |
22 | NOÈ Andrea | 65 |
23 | SENTJENS Roy | 75 |
25 | OVECHKIN Artem | 61 |
26 | IMPEY Daryl | 72 |