Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vanmarcke
1
77 kgSlagter
2
57 kgViviani
3
67 kgDebesay
4
64 kgVenturini
5
60 kgGamper
6
80 kgLópez
7
59 kgLowndes
8
82 kgTusveld
9
70 kgKorošec
10
75 kgReguigui
11
69 kgStosz
12
70 kgPorsev
13
80 kgBystrøm
15
73 kgRabitsch
17
69 kgSavitskiy
18
72 kgGibbons
19
70 kgHowes
20
61 kgBelletti
21
72 kgBoivin
22
78 kgSmukulis
23
72 kgFenn
24
79 kgKusztor
26
61 kgSchönberger
27
64 kg
1
77 kgSlagter
2
57 kgViviani
3
67 kgDebesay
4
64 kgVenturini
5
60 kgGamper
6
80 kgLópez
7
59 kgLowndes
8
82 kgTusveld
9
70 kgKorošec
10
75 kgReguigui
11
69 kgStosz
12
70 kgPorsev
13
80 kgBystrøm
15
73 kgRabitsch
17
69 kgSavitskiy
18
72 kgGibbons
19
70 kgHowes
20
61 kgBelletti
21
72 kgBoivin
22
78 kgSmukulis
23
72 kgFenn
24
79 kgKusztor
26
61 kgSchönberger
27
64 kg
Weight (KG) →
Result →
82
57
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VANMARCKE Sep | 77 |
2 | SLAGTER Tom-Jelte | 57 |
3 | VIVIANI Elia | 67 |
4 | DEBESAY Mekseb | 64 |
5 | VENTURINI Clément | 60 |
6 | GAMPER Patrick | 80 |
7 | LÓPEZ Miguel Ángel | 59 |
8 | LOWNDES Jason | 82 |
9 | TUSVELD Martijn | 70 |
10 | KOROŠEC Rok | 75 |
11 | REGUIGUI Youcef | 69 |
12 | STOSZ Patryk | 70 |
13 | PORSEV Alexander | 80 |
15 | BYSTRØM Sven Erik | 73 |
17 | RABITSCH Stephan | 69 |
18 | SAVITSKIY Ivan | 72 |
19 | GIBBONS Ryan | 70 |
20 | HOWES Alex | 61 |
21 | BELLETTI Manuel | 72 |
22 | BOIVIN Guillaume | 78 |
23 | SMUKULIS Gatis | 72 |
24 | FENN Andrew | 79 |
26 | KUSZTOR Péter | 61 |
27 | SCHÖNBERGER Sebastian | 64 |