Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Visconti
1
63 kgDuijn
2
73 kgGate
3
71 kgMohorič
4
71 kgEiking
5
75 kgKreder
6
67 kgBackaert
7
78 kgOrrico
8
70 kgGerts
9
71 kgLutsenko
10
74 kgPadun
12
67 kgGrošelj
13
62 kgChristian
15
72 kgZoidl
16
63 kgThalmann
17
61 kgvan der Lijke
18
61 kgKrizek
19
74 kgZimmermann
20
70 kgWeening
21
68 kgPelikán
22
76 kg
1
63 kgDuijn
2
73 kgGate
3
71 kgMohorič
4
71 kgEiking
5
75 kgKreder
6
67 kgBackaert
7
78 kgOrrico
8
70 kgGerts
9
71 kgLutsenko
10
74 kgPadun
12
67 kgGrošelj
13
62 kgChristian
15
72 kgZoidl
16
63 kgThalmann
17
61 kgvan der Lijke
18
61 kgKrizek
19
74 kgZimmermann
20
70 kgWeening
21
68 kgPelikán
22
76 kg
Weight (KG) →
Result →
78
61
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VISCONTI Giovanni | 63 |
2 | DUIJN Huub | 73 |
3 | GATE Aaron | 71 |
4 | MOHORIČ Matej | 71 |
5 | EIKING Odd Christian | 75 |
6 | KREDER Michel | 67 |
7 | BACKAERT Frederik | 78 |
8 | ORRICO Davide | 70 |
9 | GERTS Floris | 71 |
10 | LUTSENKO Alexey | 74 |
12 | PADUN Mark | 67 |
13 | GROŠELJ Žiga | 62 |
15 | CHRISTIAN Mark | 72 |
16 | ZOIDL Riccardo | 63 |
17 | THALMANN Roland | 61 |
18 | VAN DER LIJKE Nick | 61 |
19 | KRIZEK Matthias | 74 |
20 | ZIMMERMANN Georg | 70 |
21 | WEENING Pieter | 68 |
22 | PELIKÁN János | 76 |