Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Liepiņš
1
67 kgSteimle
2
73 kgKoch
3
75 kgDevriendt
4
70 kgBarbero
5
66 kgVanspeybrouck
6
76 kgKrizek
7
74 kgHardy
8
62 kgDavies
9
66 kgSchönberger
10
64 kgAuer
11
73 kgJensen
12
67 kgBonnamour
13
70 kgGasparotto
15
65 kgGamper
16
86 kgRitzinger
17
80 kgWirtgen
18
77 kgFedeli
19
65 kgPeyskens
20
69 kgGamper
21
72 kgGraf
22
72 kgEngelhardt
23
68 kg
1
67 kgSteimle
2
73 kgKoch
3
75 kgDevriendt
4
70 kgBarbero
5
66 kgVanspeybrouck
6
76 kgKrizek
7
74 kgHardy
8
62 kgDavies
9
66 kgSchönberger
10
64 kgAuer
11
73 kgJensen
12
67 kgBonnamour
13
70 kgGasparotto
15
65 kgGamper
16
86 kgRitzinger
17
80 kgWirtgen
18
77 kgFedeli
19
65 kgPeyskens
20
69 kgGamper
21
72 kgGraf
22
72 kgEngelhardt
23
68 kg
Weight (KG) →
Result →
86
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LIEPIŅŠ Emīls | 67 |
2 | STEIMLE Jannik | 73 |
3 | KOCH Jonas | 75 |
4 | DEVRIENDT Tom | 70 |
5 | BARBERO Carlos | 66 |
6 | VANSPEYBROUCK Pieter | 76 |
7 | KRIZEK Matthias | 74 |
8 | HARDY Romain | 62 |
9 | DAVIES Scott | 66 |
10 | SCHÖNBERGER Sebastian | 64 |
11 | AUER Daniel | 73 |
12 | JENSEN August | 67 |
13 | BONNAMOUR Franck | 70 |
15 | GASPAROTTO Enrico | 65 |
16 | GAMPER Florian | 86 |
17 | RITZINGER Felix | 80 |
18 | WIRTGEN Tom | 77 |
19 | FEDELI Alessandro | 65 |
20 | PEYSKENS Dimitri | 69 |
21 | GAMPER Mario | 72 |
22 | GRAF Andreas | 72 |
23 | ENGELHARDT Felix | 68 |