Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Großschartner
1
64 kgdel Toro
2
64 kgPlowright
3
80 kgAugust
4
57 kgÁlvarez
5
74 kgRyan
6
56 kgMajka
7
62 kgEngelhardt
8
68 kgBaroncini
9
74 kgKonychev
10
76 kgCovi
11
66 kgKämna
12
65 kgŻelazowski
13
68 kgLangellotti
14
64 kgDik
15
77 kgCharmig
16
66 kgBudziński
17
70 kgZangerle
18
68 kg
1
64 kgdel Toro
2
64 kgPlowright
3
80 kgAugust
4
57 kgÁlvarez
5
74 kgRyan
6
56 kgMajka
7
62 kgEngelhardt
8
68 kgBaroncini
9
74 kgKonychev
10
76 kgCovi
11
66 kgKämna
12
65 kgŻelazowski
13
68 kgLangellotti
14
64 kgDik
15
77 kgCharmig
16
66 kgBudziński
17
70 kgZangerle
18
68 kg
Weight (KG) →
Result →
80
56
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | GROßSCHARTNER Felix | 64 |
2 | DEL TORO Isaac | 64 |
3 | PLOWRIGHT Jensen | 80 |
4 | AUGUST Andrew | 57 |
5 | ÁLVAREZ Héctor | 74 |
6 | RYAN Archie | 56 |
7 | MAJKA Rafał | 62 |
8 | ENGELHARDT Felix | 68 |
9 | BARONCINI Filippo | 74 |
10 | KONYCHEV Alexander | 76 |
11 | COVI Alessandro | 66 |
12 | KÄMNA Lennard | 65 |
13 | ŻELAZOWSKI Michał | 68 |
14 | LANGELLOTTI Victor | 64 |
15 | DIK Calvin | 77 |
16 | CHARMIG Anthon | 66 |
17 | BUDZIŃSKI Marcin | 70 |
18 | ZANGERLE Emanuel | 68 |