Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 49
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Van den Berghe
1
65 kgDuboc
2
67 kgAlavoine
3
73 kgDefraeye
4
67 kgMasselis
5
65 kgBlaise
6
72 kgDupont
8
68 kgBuysse
11
72 kgDevroye
12
62 kgSales
13
68 kgLambot
14
69 kgSpiessens
15
72 kgPaul
16
77 kgHanlet
17
70 kgCornet
18
69 kgCruchon
22
67 kgCoolsaet
25
73 kgDhulst
27
72 kgBeyens
30
71 kg
1
65 kgDuboc
2
67 kgAlavoine
3
73 kgDefraeye
4
67 kgMasselis
5
65 kgBlaise
6
72 kgDupont
8
68 kgBuysse
11
72 kgDevroye
12
62 kgSales
13
68 kgLambot
14
69 kgSpiessens
15
72 kgPaul
16
77 kgHanlet
17
70 kgCornet
18
69 kgCruchon
22
67 kgCoolsaet
25
73 kgDhulst
27
72 kgBeyens
30
71 kg
Weight (KG) →
Result →
77
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BERGHE René | 65 |
2 | DUBOC Paul | 67 |
3 | ALAVOINE Jean | 73 |
4 | DEFRAEYE Odiel | 67 |
5 | MASSELIS Jules | 65 |
6 | BLAISE André | 72 |
8 | DUPONT Albert | 68 |
11 | BUYSSE Marcel | 72 |
12 | DEVROYE Henri | 62 |
13 | SALES Jules | 68 |
14 | LAMBOT Firmin | 69 |
15 | SPIESSENS Alfons | 72 |
16 | PAUL Ernest | 77 |
17 | HANLET Henri | 70 |
18 | CORNET Henri | 69 |
22 | CRUCHON Charles | 67 |
25 | COOLSAET Louis | 73 |
27 | DHULST Vincent | 72 |
30 | BEYENS Jules | 71 |