Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Van den Berghe
1
65 kgMasselis
2
65 kgEveraerts
4
66 kgDevroye
6
62 kgDefraeye
9
67 kgBuysse
10
72 kgLeturgie
11
69 kgPlatteau
13
65 kgHeusghem
14
84 kgLambot
15
69 kgDesmedt
16
64 kgCoolsaet
18
73 kgDupont
19
68 kgVan Daele
21
68 kgHanlet
22
70 kgSpiessens
23
72 kgD'Haen
24
61 kgCatteau
25
84 kgVan de Velde
28
69 kgDe Smet
29
65 kgTiberghien
30
65 kgNempon
32
58 kgLéonard
32
69 kg
1
65 kgMasselis
2
65 kgEveraerts
4
66 kgDevroye
6
62 kgDefraeye
9
67 kgBuysse
10
72 kgLeturgie
11
69 kgPlatteau
13
65 kgHeusghem
14
84 kgLambot
15
69 kgDesmedt
16
64 kgCoolsaet
18
73 kgDupont
19
68 kgVan Daele
21
68 kgHanlet
22
70 kgSpiessens
23
72 kgD'Haen
24
61 kgCatteau
25
84 kgVan de Velde
28
69 kgDe Smet
29
65 kgTiberghien
30
65 kgNempon
32
58 kgLéonard
32
69 kg
Weight (KG) →
Result →
84
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BERGHE René | 65 |
2 | MASSELIS Jules | 65 |
4 | EVERAERTS Pierre | 66 |
6 | DEVROYE Henri | 62 |
9 | DEFRAEYE Odiel | 67 |
10 | BUYSSE Marcel | 72 |
11 | LETURGIE Maurice | 69 |
13 | PLATTEAU Eugène | 65 |
14 | HEUSGHEM Pierre-Joseph | 84 |
15 | LAMBOT Firmin | 69 |
16 | DESMEDT Albert | 64 |
18 | COOLSAET Louis | 73 |
19 | DUPONT Albert | 68 |
21 | VAN DAELE Joseph | 68 |
22 | HANLET Henri | 70 |
23 | SPIESSENS Alfons | 72 |
24 | D'HAEN François | 61 |
25 | CATTEAU Aloïs | 84 |
28 | VAN DE VELDE Pierre | 69 |
29 | DE SMET Achiel | 65 |
30 | TIBERGHIEN Hector | 65 |
32 | NEMPON Jules | 58 |
32 | LÉONARD Edouard | 69 |