Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Hanlet
1
70 kgMasselis
2
65 kgLamon
3
57 kgDevroye
4
62 kgLeturgie
5
69 kgDhulst
7
72 kgVan den Berghe
9
65 kgVan de Velde
10
69 kgDesmedt
11
64 kgDepauw
12
74 kgPlatteau
13
65 kgCoolsaet
14
73 kgEveraerts
15
66 kgDupont
17
68 kgDefraeye
19
67 kgDe Smet
20
65 kgDorvilliers
21
71 kgCrupelandt
23
65 kgCatteau
26
84 kgLambot
31
69 kgNempon
34
58 kgHeusghem
38
84 kgD'Haen
39
61 kg
1
70 kgMasselis
2
65 kgLamon
3
57 kgDevroye
4
62 kgLeturgie
5
69 kgDhulst
7
72 kgVan den Berghe
9
65 kgVan de Velde
10
69 kgDesmedt
11
64 kgDepauw
12
74 kgPlatteau
13
65 kgCoolsaet
14
73 kgEveraerts
15
66 kgDupont
17
68 kgDefraeye
19
67 kgDe Smet
20
65 kgDorvilliers
21
71 kgCrupelandt
23
65 kgCatteau
26
84 kgLambot
31
69 kgNempon
34
58 kgHeusghem
38
84 kgD'Haen
39
61 kg
Weight (KG) →
Result →
84
57
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | HANLET Henri | 70 |
2 | MASSELIS Jules | 65 |
3 | LAMON Robert | 57 |
4 | DEVROYE Henri | 62 |
5 | LETURGIE Maurice | 69 |
7 | DHULST Vincent | 72 |
9 | VAN DEN BERGHE René | 65 |
10 | VAN DE VELDE Pierre | 69 |
11 | DESMEDT Albert | 64 |
12 | DEPAUW Achiel | 74 |
13 | PLATTEAU Eugène | 65 |
14 | COOLSAET Louis | 73 |
15 | EVERAERTS Pierre | 66 |
17 | DUPONT Albert | 68 |
19 | DEFRAEYE Odiel | 67 |
20 | DE SMET Achiel | 65 |
21 | DORVILLIERS Emile | 71 |
23 | CRUPELANDT Charles | 65 |
26 | CATTEAU Aloïs | 84 |
31 | LAMBOT Firmin | 69 |
34 | NEMPON Jules | 58 |
38 | HEUSGHEM Pierre-Joseph | 84 |
39 | D'HAEN François | 61 |