Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Blaise
1
72 kgVan den Berghe
2
65 kgMasselis
3
65 kgSpiessens
4
72 kgChristophe
5
67 kgPélissier
6
72 kgLeturgie
7
69 kgDefraeye
8
67 kgLéonard
9
69 kgHeusghem
11
79 kgDevroye
13
62 kgD'Haen
15
61 kgLamon
17
57 kgCoolsaet
19
73 kgPetitjean
21
62 kgPetitjean
22
66 kgBeyens
26
71 kgLeliaert
27
79 kg
1
72 kgVan den Berghe
2
65 kgMasselis
3
65 kgSpiessens
4
72 kgChristophe
5
67 kgPélissier
6
72 kgLeturgie
7
69 kgDefraeye
8
67 kgLéonard
9
69 kgHeusghem
11
79 kgDevroye
13
62 kgD'Haen
15
61 kgLamon
17
57 kgCoolsaet
19
73 kgPetitjean
21
62 kgPetitjean
22
66 kgBeyens
26
71 kgLeliaert
27
79 kg
Weight (KG) →
Result →
79
57
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | BLAISE André | 72 |
2 | VAN DEN BERGHE René | 65 |
3 | MASSELIS Jules | 65 |
4 | SPIESSENS Alfons | 72 |
5 | CHRISTOPHE Eugène | 67 |
6 | PÉLISSIER Henri | 72 |
7 | LETURGIE Maurice | 69 |
8 | DEFRAEYE Odiel | 67 |
9 | LÉONARD Edouard | 69 |
11 | HEUSGHEM Louis | 79 |
13 | DEVROYE Henri | 62 |
15 | D'HAEN François | 61 |
17 | LAMON Robert | 57 |
19 | COOLSAET Louis | 73 |
21 | PETITJEAN Luc | 62 |
22 | PETITJEAN Louis | 66 |
26 | BEYENS Jules | 71 |
27 | LELIAERT Maurice | 79 |