Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Pélissier
1
72 kgChristophe
2
67 kgBlaise
3
72 kgTiberghien
4
65 kgSalmon
5
66 kgDefraeye
6
67 kgAlavoine
7
73 kgLamon
8
57 kgDupont
9
68 kgEgg
10
72 kgHeusghem
11
86 kgVan den Berghe
12
65 kgLambot
13
69 kgPaul
14
77 kgVan de Velde
17
69 kgDevroye
18
62 kgCornet
19
69 kgPetitjean
20
66 kgDeloffre
23
60 kgVan Lerberghe
25
79 kgEveraerts
27
66 kg
1
72 kgChristophe
2
67 kgBlaise
3
72 kgTiberghien
4
65 kgSalmon
5
66 kgDefraeye
6
67 kgAlavoine
7
73 kgLamon
8
57 kgDupont
9
68 kgEgg
10
72 kgHeusghem
11
86 kgVan den Berghe
12
65 kgLambot
13
69 kgPaul
14
77 kgVan de Velde
17
69 kgDevroye
18
62 kgCornet
19
69 kgPetitjean
20
66 kgDeloffre
23
60 kgVan Lerberghe
25
79 kgEveraerts
27
66 kg
Weight (KG) →
Result →
86
57
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | PÉLISSIER Henri | 72 |
2 | CHRISTOPHE Eugène | 67 |
3 | BLAISE André | 72 |
4 | TIBERGHIEN Hector | 65 |
5 | SALMON Félicien | 66 |
6 | DEFRAEYE Odiel | 67 |
7 | ALAVOINE Jean | 73 |
8 | LAMON Robert | 57 |
9 | DUPONT Albert | 68 |
10 | EGG Oscar | 72 |
11 | HEUSGHEM Hector | 86 |
12 | VAN DEN BERGHE René | 65 |
13 | LAMBOT Firmin | 69 |
14 | PAUL Ernest | 77 |
17 | VAN DE VELDE Pierre | 69 |
18 | DEVROYE Henri | 62 |
19 | CORNET Henri | 69 |
20 | PETITJEAN Louis | 66 |
23 | DELOFFRE Jules | 60 |
25 | VAN LERBERGHE Henri | 79 |
27 | EVERAERTS Pierre | 66 |