Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Pélissier
2
72 kgLamon
3
57 kgBlaise
4
72 kgDefraeye
5
67 kgAlavoine
7
73 kgVan den Berghe
9
65 kgVan de Velde
10
69 kgDupont
12
68 kgLambot
13
69 kgHeusghem
14
86 kgPetitjean
15
66 kgChristophe
16
67 kgDevroye
17
62 kgEveraerts
18
66 kgVan Lerberghe
19
79 kgDeloffre
22
60 kg
2
72 kgLamon
3
57 kgBlaise
4
72 kgDefraeye
5
67 kgAlavoine
7
73 kgVan den Berghe
9
65 kgVan de Velde
10
69 kgDupont
12
68 kgLambot
13
69 kgHeusghem
14
86 kgPetitjean
15
66 kgChristophe
16
67 kgDevroye
17
62 kgEveraerts
18
66 kgVan Lerberghe
19
79 kgDeloffre
22
60 kg
Weight (KG) →
Result →
86
57
2
22
# | Rider | Weight (KG) |
---|---|---|
2 | PÉLISSIER Henri | 72 |
3 | LAMON Robert | 57 |
4 | BLAISE André | 72 |
5 | DEFRAEYE Odiel | 67 |
7 | ALAVOINE Jean | 73 |
9 | VAN DEN BERGHE René | 65 |
10 | VAN DE VELDE Pierre | 69 |
12 | DUPONT Albert | 68 |
13 | LAMBOT Firmin | 69 |
14 | HEUSGHEM Hector | 86 |
15 | PETITJEAN Louis | 66 |
16 | CHRISTOPHE Eugène | 67 |
17 | DEVROYE Henri | 62 |
18 | EVERAERTS Pierre | 66 |
19 | VAN LERBERGHE Henri | 79 |
22 | DELOFFRE Jules | 60 |