Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Buysse
1
72 kgDefraeye
4
67 kgCoomans
5
62 kgDevroye
5
62 kgSpiessens
5
72 kgDejonghe
5
81 kgScieur
15
78 kgEveraerts
16
66 kgVan Daele
17
68 kgMottiat
18
65 kgMasson
19
77 kgBuysse
20
68 kgPetitjean
28
66 kgVan Lerberghe
32
79 kgBlaise
35
72 kgBotté
36
67 kgD'Haen
39
61 kgHeusghem
43
86 kgVerbraecken
45
64 kgLeliaert
53
79 kg
1
72 kgDefraeye
4
67 kgCoomans
5
62 kgDevroye
5
62 kgSpiessens
5
72 kgDejonghe
5
81 kgScieur
15
78 kgEveraerts
16
66 kgVan Daele
17
68 kgMottiat
18
65 kgMasson
19
77 kgBuysse
20
68 kgPetitjean
28
66 kgVan Lerberghe
32
79 kgBlaise
35
72 kgBotté
36
67 kgD'Haen
39
61 kgHeusghem
43
86 kgVerbraecken
45
64 kgLeliaert
53
79 kg
Weight (KG) →
Result →
86
61
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | BUYSSE Marcel | 72 |
4 | DEFRAEYE Odiel | 67 |
5 | COOMANS Jacques | 62 |
5 | DEVROYE Henri | 62 |
5 | SPIESSENS Alfons | 72 |
5 | DEJONGHE Albert | 81 |
15 | SCIEUR Léon | 78 |
16 | EVERAERTS Pierre | 66 |
17 | VAN DAELE Joseph | 68 |
18 | MOTTIAT Louis | 65 |
19 | MASSON Émile | 77 |
20 | BUYSSE Lucien | 68 |
28 | PETITJEAN Louis | 66 |
32 | VAN LERBERGHE Henri | 79 |
35 | BLAISE André | 72 |
36 | BOTTÉ Camille | 67 |
39 | D'HAEN François | 61 |
43 | HEUSGHEM Hector | 86 |
45 | VERBRAECKEN Louis | 64 |
53 | LELIAERT Maurice | 79 |