Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Mottiat
1
65 kgDefraeye
4
67 kgVan Daele
5
68 kgDevroye
8
62 kgBuysse
9
68 kgBuysse
11
72 kgCoomans
15
62 kgHeusghem
16
86 kgMasson
17
77 kgSpiessens
18
72 kgBlaise
19
72 kgBotté
21
67 kgEveraerts
22
66 kgLeliaert
24
79 kgScieur
25
78 kgPetitjean
32
66 kgAllard
35
69 kg
1
65 kgDefraeye
4
67 kgVan Daele
5
68 kgDevroye
8
62 kgBuysse
9
68 kgBuysse
11
72 kgCoomans
15
62 kgHeusghem
16
86 kgMasson
17
77 kgSpiessens
18
72 kgBlaise
19
72 kgBotté
21
67 kgEveraerts
22
66 kgLeliaert
24
79 kgScieur
25
78 kgPetitjean
32
66 kgAllard
35
69 kg
Weight (KG) →
Result →
86
62
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | MOTTIAT Louis | 65 |
4 | DEFRAEYE Odiel | 67 |
5 | VAN DAELE Joseph | 68 |
8 | DEVROYE Henri | 62 |
9 | BUYSSE Lucien | 68 |
11 | BUYSSE Marcel | 72 |
15 | COOMANS Jacques | 62 |
16 | HEUSGHEM Hector | 86 |
17 | MASSON Émile | 77 |
18 | SPIESSENS Alfons | 72 |
19 | BLAISE André | 72 |
21 | BOTTÉ Camille | 67 |
22 | EVERAERTS Pierre | 66 |
24 | LELIAERT Maurice | 79 |
25 | SCIEUR Léon | 78 |
32 | PETITJEAN Louis | 66 |
35 | ALLARD Henri | 69 |