Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Mottiat
1
65 kgScieur
3
78 kgMasson
4
77 kgBlaise
5
72 kgVan Daele
7
68 kgBuysse
9
68 kgDefraeye
11
67 kgEveraerts
12
66 kgHeusghem
14
86 kgDevroye
16
62 kgCoomans
17
62 kgPetitjean
23
66 kgSpiessens
25
72 kgLeliaert
26
79 kgBotté
27
67 kgAllard
29
69 kgFlamand
38
57 kg
1
65 kgScieur
3
78 kgMasson
4
77 kgBlaise
5
72 kgVan Daele
7
68 kgBuysse
9
68 kgDefraeye
11
67 kgEveraerts
12
66 kgHeusghem
14
86 kgDevroye
16
62 kgCoomans
17
62 kgPetitjean
23
66 kgSpiessens
25
72 kgLeliaert
26
79 kgBotté
27
67 kgAllard
29
69 kgFlamand
38
57 kg
Weight (KG) →
Result →
86
57
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | MOTTIAT Louis | 65 |
3 | SCIEUR Léon | 78 |
4 | MASSON Émile | 77 |
5 | BLAISE André | 72 |
7 | VAN DAELE Joseph | 68 |
9 | BUYSSE Lucien | 68 |
11 | DEFRAEYE Odiel | 67 |
12 | EVERAERTS Pierre | 66 |
14 | HEUSGHEM Hector | 86 |
16 | DEVROYE Henri | 62 |
17 | COOMANS Jacques | 62 |
23 | PETITJEAN Louis | 66 |
25 | SPIESSENS Alfons | 72 |
26 | LELIAERT Maurice | 79 |
27 | BOTTÉ Camille | 67 |
29 | ALLARD Henri | 69 |
38 | FLAMAND Louis | 57 |