Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mottiat
1
65 kgDejonghe
2
81 kgMasson
3
77 kgCoomans
5
62 kgVermandel
7
75 kgHeusghem
11
86 kgHellebaut
12
74 kgVan Aken
13
73 kgBeeckman
15
61 kgVan Lerberghe
16
79 kgBuysse
18
68 kgHudsyn
19
71 kgBeths
20
77 kgDevos
22
72 kgVan Bree
24
71 kgLampaert
26
74 kgVan Mol
27
68 kg
1
65 kgDejonghe
2
81 kgMasson
3
77 kgCoomans
5
62 kgVermandel
7
75 kgHeusghem
11
86 kgHellebaut
12
74 kgVan Aken
13
73 kgBeeckman
15
61 kgVan Lerberghe
16
79 kgBuysse
18
68 kgHudsyn
19
71 kgBeths
20
77 kgDevos
22
72 kgVan Bree
24
71 kgLampaert
26
74 kgVan Mol
27
68 kg
Weight (KG) →
Result →
86
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | MOTTIAT Louis | 65 |
2 | DEJONGHE Albert | 81 |
3 | MASSON Émile | 77 |
5 | COOMANS Jacques | 62 |
7 | VERMANDEL René | 75 |
11 | HEUSGHEM Hector | 86 |
12 | HELLEBAUT Hilaire | 74 |
13 | VAN AKEN Léon | 73 |
15 | BEECKMAN Théophile | 61 |
16 | VAN LERBERGHE Henri | 79 |
18 | BUYSSE Lucien | 68 |
19 | HUDSYN Pierre | 71 |
20 | BETHS François | 77 |
22 | DEVOS Léon | 72 |
24 | VAN BREE Charles | 71 |
26 | LAMPAERT Maurice | 74 |
27 | VAN MOL Karel | 68 |