Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Vermandel
2
75 kgDefraeye
5
67 kgVan Daele
6
68 kgMasson
9
77 kgBeths
11
77 kgBuysse
12
68 kgDejonghe
13
81 kgBudts
14
78 kgVerbraecken
15
64 kgCoomans
16
62 kgAnseeuw
17
76 kgNyssen
19
74 kgClaerhout
22
82 kgVan Aken
23
73 kgBotté
24
67 kgWendels
27
72 kgLenaers
30
80 kgMasselis
31
65 kgStandaert
32
72 kgJordens
33
72 kgLampaert
35
74 kg
2
75 kgDefraeye
5
67 kgVan Daele
6
68 kgMasson
9
77 kgBeths
11
77 kgBuysse
12
68 kgDejonghe
13
81 kgBudts
14
78 kgVerbraecken
15
64 kgCoomans
16
62 kgAnseeuw
17
76 kgNyssen
19
74 kgClaerhout
22
82 kgVan Aken
23
73 kgBotté
24
67 kgWendels
27
72 kgLenaers
30
80 kgMasselis
31
65 kgStandaert
32
72 kgJordens
33
72 kgLampaert
35
74 kg
Weight (KG) →
Result →
82
62
2
35
# | Rider | Weight (KG) |
---|---|---|
2 | VERMANDEL René | 75 |
5 | DEFRAEYE Odiel | 67 |
6 | VAN DAELE Joseph | 68 |
9 | MASSON Émile | 77 |
11 | BETHS François | 77 |
12 | BUYSSE Lucien | 68 |
13 | DEJONGHE Albert | 81 |
14 | BUDTS Louis | 78 |
15 | VERBRAECKEN Louis | 64 |
16 | COOMANS Jacques | 62 |
17 | ANSEEUW Urbain | 76 |
19 | NYSSEN Guillaume | 74 |
22 | CLAERHOUT Arthur | 82 |
23 | VAN AKEN Léon | 73 |
24 | BOTTÉ Camille | 67 |
27 | WENDELS René | 72 |
30 | LENAERS Victor | 80 |
31 | MASSELIS Jules | 65 |
32 | STANDAERT Alfons | 72 |
33 | JORDENS Albert | 72 |
35 | LAMPAERT Maurice | 74 |