Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vermandel
1
75 kgStandaert
3
72 kgBudts
4
78 kgHellebaut
5
74 kgVan Aken
6
73 kgJordens
9
72 kgLambot
11
69 kgBeeckman
13
61 kgTiberghien
14
65 kgMasson
16
77 kgSamyn
18
71 kgBraeckeveldt
21
73 kgMarchand
22
74 kgMatton
26
73 kgClaerhout
30
82 kgGovaert
31
72 kgVan Bree
34
71 kgBlaise
39
72 kgSellier
40
69 kgLampaert
44
74 kgAllard
47
69 kg
1
75 kgStandaert
3
72 kgBudts
4
78 kgHellebaut
5
74 kgVan Aken
6
73 kgJordens
9
72 kgLambot
11
69 kgBeeckman
13
61 kgTiberghien
14
65 kgMasson
16
77 kgSamyn
18
71 kgBraeckeveldt
21
73 kgMarchand
22
74 kgMatton
26
73 kgClaerhout
30
82 kgGovaert
31
72 kgVan Bree
34
71 kgBlaise
39
72 kgSellier
40
69 kgLampaert
44
74 kgAllard
47
69 kg
Weight (KG) →
Result →
82
61
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VERMANDEL René | 75 |
3 | STANDAERT Alfons | 72 |
4 | BUDTS Louis | 78 |
5 | HELLEBAUT Hilaire | 74 |
6 | VAN AKEN Léon | 73 |
9 | JORDENS Albert | 72 |
11 | LAMBOT Firmin | 69 |
13 | BEECKMAN Théophile | 61 |
14 | TIBERGHIEN Hector | 65 |
16 | MASSON Émile | 77 |
18 | SAMYN Julien | 71 |
21 | BRAECKEVELDT Léon | 73 |
22 | MARCHAND Joseph | 74 |
26 | MATTON Jules | 73 |
30 | CLAERHOUT Arthur | 82 |
31 | GOVAERT Karel | 72 |
34 | VAN BREE Charles | 71 |
39 | BLAISE André | 72 |
40 | SELLIER Fernand | 69 |
44 | LAMPAERT Maurice | 74 |
47 | ALLARD Henri | 69 |