Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vermandel
1
75 kgBudts
2
78 kgMatton
3
73 kgJordens
4
72 kgHellebaut
7
74 kgSamyn
8
71 kgBeeckman
9
61 kgMasson
10
77 kgVan Aken
12
73 kgGovaert
13
72 kgMarchand
14
74 kgWendels
15
72 kgClaerhout
17
82 kgVan Bree
21
71 kgLampaert
23
74 kgAllard
25
69 kgBraeckeveldt
26
73 kg
1
75 kgBudts
2
78 kgMatton
3
73 kgJordens
4
72 kgHellebaut
7
74 kgSamyn
8
71 kgBeeckman
9
61 kgMasson
10
77 kgVan Aken
12
73 kgGovaert
13
72 kgMarchand
14
74 kgWendels
15
72 kgClaerhout
17
82 kgVan Bree
21
71 kgLampaert
23
74 kgAllard
25
69 kgBraeckeveldt
26
73 kg
Weight (KG) →
Result →
82
61
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VERMANDEL René | 75 |
2 | BUDTS Louis | 78 |
3 | MATTON Jules | 73 |
4 | JORDENS Albert | 72 |
7 | HELLEBAUT Hilaire | 74 |
8 | SAMYN Julien | 71 |
9 | BEECKMAN Théophile | 61 |
10 | MASSON Émile | 77 |
12 | VAN AKEN Léon | 73 |
13 | GOVAERT Karel | 72 |
14 | MARCHAND Joseph | 74 |
15 | WENDELS René | 72 |
17 | CLAERHOUT Arthur | 82 |
21 | VAN BREE Charles | 71 |
23 | LAMPAERT Maurice | 74 |
25 | ALLARD Henri | 69 |
26 | BRAECKEVELDT Léon | 73 |