Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Vermandel
3
75 kgMatton
4
73 kgDe Busschere
5
67 kgFrantz
7
78 kgDewaele
8
69 kgVan Daele
9
68 kgVerschueren
10
91 kgMasson
11
77 kgDepauw
12
74 kgLenaers
13
80 kgBotté
14
67 kgBeeckman
18
61 kgDejaeger
19
74 kgVertriest
21
64 kgMarchand
22
74 kgAllard
25
69 kgBraeckeveldt
26
73 kgBelvaux
28
72 kg
3
75 kgMatton
4
73 kgDe Busschere
5
67 kgFrantz
7
78 kgDewaele
8
69 kgVan Daele
9
68 kgVerschueren
10
91 kgMasson
11
77 kgDepauw
12
74 kgLenaers
13
80 kgBotté
14
67 kgBeeckman
18
61 kgDejaeger
19
74 kgVertriest
21
64 kgMarchand
22
74 kgAllard
25
69 kgBraeckeveldt
26
73 kgBelvaux
28
72 kg
Weight (KG) →
Result →
91
61
3
28
# | Rider | Weight (KG) |
---|---|---|
3 | VERMANDEL René | 75 |
4 | MATTON Jules | 73 |
5 | DE BUSSCHERE Alfred | 67 |
7 | FRANTZ Nicolas | 78 |
8 | DEWAELE Maurice | 69 |
9 | VAN DAELE Joseph | 68 |
10 | VERSCHUEREN Denis | 91 |
11 | MASSON Émile | 77 |
12 | DEPAUW Achiel | 74 |
13 | LENAERS Victor | 80 |
14 | BOTTÉ Camille | 67 |
18 | BEECKMAN Théophile | 61 |
19 | DEJAEGER Henri | 74 |
21 | VERTRIEST Jules | 64 |
22 | MARCHAND Joseph | 74 |
25 | ALLARD Henri | 69 |
26 | BRAECKEVELDT Léon | 73 |
28 | BELVAUX Jean | 72 |