Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vermandel
1
75 kgBenoît
2
72 kgFrantz
3
78 kgVerschueren
6
91 kgStandaert
7
72 kgMottiat
8
65 kgBeeckman
9
61 kgMasson
12
77 kgVan Bruaene
13
77 kgBraeckeveldt
14
73 kgHuyse
15
71 kgDejaeger
16
74 kgVertriest
17
64 kgVan Aken
18
73 kgHellebaut
19
74 kgSouchard
20
62 kgHuyvaert
21
72 kgBarthélémy
24
69 kgHeusghem
25
86 kgHudsyn
28
71 kg
1
75 kgBenoît
2
72 kgFrantz
3
78 kgVerschueren
6
91 kgStandaert
7
72 kgMottiat
8
65 kgBeeckman
9
61 kgMasson
12
77 kgVan Bruaene
13
77 kgBraeckeveldt
14
73 kgHuyse
15
71 kgDejaeger
16
74 kgVertriest
17
64 kgVan Aken
18
73 kgHellebaut
19
74 kgSouchard
20
62 kgHuyvaert
21
72 kgBarthélémy
24
69 kgHeusghem
25
86 kgHudsyn
28
71 kg
Weight (KG) →
Result →
91
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VERMANDEL René | 75 |
2 | BENOÎT Adelin | 72 |
3 | FRANTZ Nicolas | 78 |
6 | VERSCHUEREN Denis | 91 |
7 | STANDAERT Alfons | 72 |
8 | MOTTIAT Louis | 65 |
9 | BEECKMAN Théophile | 61 |
12 | MASSON Émile | 77 |
13 | VAN BRUAENE Adolf | 77 |
14 | BRAECKEVELDT Léon | 73 |
15 | HUYSE Omer | 71 |
16 | DEJAEGER Henri | 74 |
17 | VERTRIEST Jules | 64 |
18 | VAN AKEN Léon | 73 |
19 | HELLEBAUT Hilaire | 74 |
20 | SOUCHARD Achille | 62 |
21 | HUYVAERT Jules | 72 |
24 | BARTHÉLÉMY Honoré | 69 |
25 | HEUSGHEM Hector | 86 |
28 | HUDSYN Pierre | 71 |