Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Frantz
2
78 kgBenoît
3
72 kgMottiat
5
65 kgBeeckman
6
61 kgSouchard
7
62 kgDejaeger
8
74 kgVan Bruaene
9
77 kgHuyvaert
10
72 kgVermandel
11
75 kgMasson
14
77 kgHellebaut
15
74 kgVerschueren
16
91 kgHuyse
17
71 kgStandaert
18
72 kgVan Aken
19
73 kgVertriest
21
64 kgBarthélémy
22
69 kgHeusghem
25
86 kgBraeckeveldt
27
73 kgHudsyn
28
71 kg
2
78 kgBenoît
3
72 kgMottiat
5
65 kgBeeckman
6
61 kgSouchard
7
62 kgDejaeger
8
74 kgVan Bruaene
9
77 kgHuyvaert
10
72 kgVermandel
11
75 kgMasson
14
77 kgHellebaut
15
74 kgVerschueren
16
91 kgHuyse
17
71 kgStandaert
18
72 kgVan Aken
19
73 kgVertriest
21
64 kgBarthélémy
22
69 kgHeusghem
25
86 kgBraeckeveldt
27
73 kgHudsyn
28
71 kg
Weight (KG) →
Result →
91
61
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | FRANTZ Nicolas | 78 |
3 | BENOÎT Adelin | 72 |
5 | MOTTIAT Louis | 65 |
6 | BEECKMAN Théophile | 61 |
7 | SOUCHARD Achille | 62 |
8 | DEJAEGER Henri | 74 |
9 | VAN BRUAENE Adolf | 77 |
10 | HUYVAERT Jules | 72 |
11 | VERMANDEL René | 75 |
14 | MASSON Émile | 77 |
15 | HELLEBAUT Hilaire | 74 |
16 | VERSCHUEREN Denis | 91 |
17 | HUYSE Omer | 71 |
18 | STANDAERT Alfons | 72 |
19 | VAN AKEN Léon | 73 |
21 | VERTRIEST Jules | 64 |
22 | BARTHÉLÉMY Honoré | 69 |
25 | HEUSGHEM Hector | 86 |
27 | BRAECKEVELDT Léon | 73 |
28 | HUDSYN Pierre | 71 |