Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 30
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Decroix
2
68 kgKint
4
74 kgBonduel
5
74 kgHendrickx
10
70 kgWierinckx
11
72 kgMoerenhout
14
72 kgDignef
18
70 kgVerdyck
19
78 kgGarnier
22
74 kgHerckenrath
29
76 kgWauters
35
72 kgBraeckeveldt
44
64 kgGijssels
57
75 kgMersch
64
73 kgRoosemont
68
80 kgNeuville
72
80 kgLouyet
101
64 kg
2
68 kgKint
4
74 kgBonduel
5
74 kgHendrickx
10
70 kgWierinckx
11
72 kgMoerenhout
14
72 kgDignef
18
70 kgVerdyck
19
78 kgGarnier
22
74 kgHerckenrath
29
76 kgWauters
35
72 kgBraeckeveldt
44
64 kgGijssels
57
75 kgMersch
64
73 kgRoosemont
68
80 kgNeuville
72
80 kgLouyet
101
64 kg
Weight (KG) →
Result →
80
64
2
101
# | Rider | Weight (KG) |
---|---|---|
2 | DECROIX Emile | 68 |
4 | KINT Marcel | 74 |
5 | BONDUEL Frans | 74 |
10 | HENDRICKX Albert | 70 |
11 | WIERINCKX Robert | 72 |
14 | MOERENHOUT Jef | 72 |
18 | DIGNEF Antoon | 70 |
19 | VERDYCK August | 78 |
22 | GARNIER Henri | 74 |
29 | HERCKENRATH Theo | 76 |
35 | WAUTERS Jean | 72 |
44 | BRAECKEVELDT Adolphe | 64 |
57 | GIJSSELS Romain | 75 |
64 | MERSCH Arsène | 73 |
68 | ROOSEMONT Leopold | 80 |
72 | NEUVILLE François | 80 |
101 | LOUYET Léon | 64 |