Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 4.9 * weight - 314
This means that on average for every extra kilogram weight a rider loses 4.9 positions in the result.
Meulenberg
1
73 kgPedroli
3
67 kgWauters
5
72 kgDecroix
5
68 kgVanoverberghe
5
75 kgVissers
5
65 kgWalschot
31
68 kgBraeckeveldt
33
64 kgDictus
35
74 kgAerts
39
70 kgMoerenhout
41
72 kgGarnier
50
74 kgHerckenrath
60
76 kgMuller
62
74 kgRoosemont
68
80 kgMersch
72
73 kgDeloor
82
79 kgMasson jr
101
78 kgNeuville
102
80 kg
1
73 kgPedroli
3
67 kgWauters
5
72 kgDecroix
5
68 kgVanoverberghe
5
75 kgVissers
5
65 kgWalschot
31
68 kgBraeckeveldt
33
64 kgDictus
35
74 kgAerts
39
70 kgMoerenhout
41
72 kgGarnier
50
74 kgHerckenrath
60
76 kgMuller
62
74 kgRoosemont
68
80 kgMersch
72
73 kgDeloor
82
79 kgMasson jr
101
78 kgNeuville
102
80 kg
Weight (KG) →
Result →
80
64
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | MEULENBERG Eloi | 73 |
3 | PEDROLI René | 67 |
5 | WAUTERS Jean | 72 |
5 | DECROIX Emile | 68 |
5 | VANOVERBERGHE Cyriel | 75 |
5 | VISSERS Edward | 65 |
31 | WALSCHOT René | 68 |
33 | BRAECKEVELDT Adolphe | 64 |
35 | DICTUS Frans | 74 |
39 | AERTS Jean | 70 |
41 | MOERENHOUT Jef | 72 |
50 | GARNIER Henri | 74 |
60 | HERCKENRATH Theo | 76 |
62 | MULLER Hubert | 74 |
68 | ROOSEMONT Leopold | 80 |
72 | MERSCH Arsène | 73 |
82 | DELOOR Gustaaf | 79 |
101 | MASSON JR Émile | 78 |
102 | NEUVILLE François | 80 |