Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 108
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Baffi
4
70 kgMuseeuw
5
71 kgVanderaerden
6
74 kgDe Wilde
8
70 kgSørensen
9
70 kgPieters
13
82 kgvan der Poel
14
70 kgPeeters
15
76 kgHeirweg
19
73 kgJärmann
23
73 kgAbduzhaparov
32
72 kgPlanckaert
37
69 kgVeenstra
40
70 kgTchmil
42
75 kgVerstrepen
51
66 kgde Rooij
52
69 kgHoste
55
76 kgSunderland
59
65 kgde Vries
62
75 kg
4
70 kgMuseeuw
5
71 kgVanderaerden
6
74 kgDe Wilde
8
70 kgSørensen
9
70 kgPieters
13
82 kgvan der Poel
14
70 kgPeeters
15
76 kgHeirweg
19
73 kgJärmann
23
73 kgAbduzhaparov
32
72 kgPlanckaert
37
69 kgVeenstra
40
70 kgTchmil
42
75 kgVerstrepen
51
66 kgde Rooij
52
69 kgHoste
55
76 kgSunderland
59
65 kgde Vries
62
75 kg
Weight (KG) →
Result →
82
65
4
62
# | Rider | Weight (KG) |
---|---|---|
4 | BAFFI Adriano | 70 |
5 | MUSEEUW Johan | 71 |
6 | VANDERAERDEN Eric | 74 |
8 | DE WILDE Etienne | 70 |
9 | SØRENSEN Rolf | 70 |
13 | PIETERS Peter | 82 |
14 | VAN DER POEL Adrie | 70 |
15 | PEETERS Wilfried | 76 |
19 | HEIRWEG Dirk | 73 |
23 | JÄRMANN Rolf | 73 |
32 | ABDUZHAPAROV Djamolidine | 72 |
37 | PLANCKAERT Eddy | 69 |
40 | VEENSTRA Wiebren | 70 |
42 | TCHMIL Andrei | 75 |
51 | VERSTREPEN Johan | 66 |
52 | DE ROOIJ Theo | 69 |
55 | HOSTE Frank | 76 |
59 | SUNDERLAND Scott | 65 |
62 | DE VRIES Gerrit | 75 |