Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Svorada
1
76 kgVainšteins
2
72 kgNazon
3
68 kgGardeyn
4
75 kgHauptman
6
70 kgNazon
7
74 kgVoeckler
8
71 kgBortolami
9
73 kgMattan
10
69 kgEeckhout
11
73 kgPencolé
12
74 kgD'Hollander
13
74 kgDierckxsens
14
71 kgTrampusch
15
60 kgLöwik
16
72 kgSteels
17
73 kgVoskamp
20
75 kgLoddo
21
60 kg
1
76 kgVainšteins
2
72 kgNazon
3
68 kgGardeyn
4
75 kgHauptman
6
70 kgNazon
7
74 kgVoeckler
8
71 kgBortolami
9
73 kgMattan
10
69 kgEeckhout
11
73 kgPencolé
12
74 kgD'Hollander
13
74 kgDierckxsens
14
71 kgTrampusch
15
60 kgLöwik
16
72 kgSteels
17
73 kgVoskamp
20
75 kgLoddo
21
60 kg
Weight (KG) →
Result →
76
60
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | SVORADA Ján | 76 |
2 | VAINŠTEINS Romāns | 72 |
3 | NAZON Damien | 68 |
4 | GARDEYN Gorik | 75 |
6 | HAUPTMAN Andrej | 70 |
7 | NAZON Jean-Patrick | 74 |
8 | VOECKLER Thomas | 71 |
9 | BORTOLAMI Gianluca | 73 |
10 | MATTAN Nico | 69 |
11 | EECKHOUT Niko | 73 |
12 | PENCOLÉ Franck | 74 |
13 | D'HOLLANDER Glenn | 74 |
14 | DIERCKXSENS Ludo | 71 |
15 | TRAMPUSCH Gerhard | 60 |
16 | LÖWIK Gerben | 72 |
17 | STEELS Tom | 73 |
20 | VOSKAMP Bart | 75 |
21 | LODDO Alberto | 60 |