Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Boonen
1
82 kgvan Dijk
2
74 kgOmloop
3
78 kgO'Grady
4
73 kgSentjens
6
75 kgBortolami
7
73 kgHunter
8
72 kgQuinziato
9
74 kgKoerts
10
78 kgKirsipuu
11
80 kgBossoni
12
62 kgde Jongh
13
76 kgChavanel
15
73 kgScheuneman
16
75 kgChavanel
17
77 kgVoeckler
18
71 kgVan Hecke
19
69 kgDe Schrooder
20
61 kgVoskamp
21
75 kgvan Heeswijk
22
73 kgVan Goolen
23
70 kg
1
82 kgvan Dijk
2
74 kgOmloop
3
78 kgO'Grady
4
73 kgSentjens
6
75 kgBortolami
7
73 kgHunter
8
72 kgQuinziato
9
74 kgKoerts
10
78 kgKirsipuu
11
80 kgBossoni
12
62 kgde Jongh
13
76 kgChavanel
15
73 kgScheuneman
16
75 kgChavanel
17
77 kgVoeckler
18
71 kgVan Hecke
19
69 kgDe Schrooder
20
61 kgVoskamp
21
75 kgvan Heeswijk
22
73 kgVan Goolen
23
70 kg
Weight (KG) →
Result →
82
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | VAN DIJK Stefan | 74 |
3 | OMLOOP Geert | 78 |
4 | O'GRADY Stuart | 73 |
6 | SENTJENS Roy | 75 |
7 | BORTOLAMI Gianluca | 73 |
8 | HUNTER Robert | 72 |
9 | QUINZIATO Manuel | 74 |
10 | KOERTS Jans | 78 |
11 | KIRSIPUU Jaan | 80 |
12 | BOSSONI Paolo | 62 |
13 | DE JONGH Steven | 76 |
15 | CHAVANEL Sylvain | 73 |
16 | SCHEUNEMAN Niels | 75 |
17 | CHAVANEL Sébastien | 77 |
18 | VOECKLER Thomas | 71 |
19 | VAN HECKE Preben | 69 |
20 | DE SCHROODER Benny | 61 |
21 | VOSKAMP Bart | 75 |
22 | VAN HEESWIJK Max | 73 |
23 | VAN GOOLEN Jurgen | 70 |