Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Boonen
1
82 kgEeckhout
2
73 kgNapolitano
4
81 kgTrenti
8
68 kgVansevenant
9
65 kgBalčiūnas
10
90 kgVanlandschoot
11
67 kgBoucher
12
78 kgvan Dijk
13
74 kgde Wilde
14
74 kgAbakoumov
17
68 kgDe Neef
18
75 kgKonyshev
20
77 kgThijs
21
69 kgVan Impe
22
75 kgHulsmans
23
75 kgDe Fauw
24
77 kg
1
82 kgEeckhout
2
73 kgNapolitano
4
81 kgTrenti
8
68 kgVansevenant
9
65 kgBalčiūnas
10
90 kgVanlandschoot
11
67 kgBoucher
12
78 kgvan Dijk
13
74 kgde Wilde
14
74 kgAbakoumov
17
68 kgDe Neef
18
75 kgKonyshev
20
77 kgThijs
21
69 kgVan Impe
22
75 kgHulsmans
23
75 kgDe Fauw
24
77 kg
Weight (KG) →
Result →
90
65
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | EECKHOUT Niko | 73 |
4 | NAPOLITANO Danilo | 81 |
8 | TRENTI Guido | 68 |
9 | VANSEVENANT Wim | 65 |
10 | BALČIŪNAS Linas | 90 |
11 | VANLANDSCHOOT James | 67 |
12 | BOUCHER David | 78 |
13 | VAN DIJK Stefan | 74 |
14 | DE WILDE Sjef | 74 |
17 | ABAKOUMOV Igor | 68 |
18 | DE NEEF Steven | 75 |
20 | KONYSHEV Dmitry | 77 |
21 | THIJS Erwin | 69 |
22 | VAN IMPE Kevin | 75 |
23 | HULSMANS Kevin | 75 |
24 | DE FAUW Dimitri | 77 |