Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Boonen
1
82 kgEeckhout
2
73 kgNapolitano
3
81 kgvan Dijk
6
74 kgBalčiūnas
8
90 kgTrenti
9
68 kgVanlandschoot
10
67 kgVansevenant
13
65 kgBoucher
14
78 kgde Wilde
16
74 kgRoelandts
19
78 kgAbakoumov
20
68 kgDe Neef
21
75 kgKonyshev
23
77 kgThijs
24
69 kgVan Impe
25
75 kgHulsmans
26
75 kgDe Fauw
27
77 kg
1
82 kgEeckhout
2
73 kgNapolitano
3
81 kgvan Dijk
6
74 kgBalčiūnas
8
90 kgTrenti
9
68 kgVanlandschoot
10
67 kgVansevenant
13
65 kgBoucher
14
78 kgde Wilde
16
74 kgRoelandts
19
78 kgAbakoumov
20
68 kgDe Neef
21
75 kgKonyshev
23
77 kgThijs
24
69 kgVan Impe
25
75 kgHulsmans
26
75 kgDe Fauw
27
77 kg
Weight (KG) →
Result →
90
65
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | EECKHOUT Niko | 73 |
3 | NAPOLITANO Danilo | 81 |
6 | VAN DIJK Stefan | 74 |
8 | BALČIŪNAS Linas | 90 |
9 | TRENTI Guido | 68 |
10 | VANLANDSCHOOT James | 67 |
13 | VANSEVENANT Wim | 65 |
14 | BOUCHER David | 78 |
16 | DE WILDE Sjef | 74 |
19 | ROELANDTS Jürgen | 78 |
20 | ABAKOUMOV Igor | 68 |
21 | DE NEEF Steven | 75 |
23 | KONYSHEV Dmitry | 77 |
24 | THIJS Erwin | 69 |
25 | VAN IMPE Kevin | 75 |
26 | HULSMANS Kevin | 75 |
27 | DE FAUW Dimitri | 77 |