Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Boonen
1
82 kgvan Heeswijk
2
73 kgTjallingii
3
81 kgCooke
4
75 kgSteegmans
5
82 kgPérez
6
68 kgEeckhout
7
73 kgde Jongh
8
76 kgAmorison
10
70 kgSijmens
11
69 kgNeirynck
12
71 kgNuyens
13
68 kgVan den Broeck
14
69 kgRoelandts
15
78 kgVan Impe
16
75 kgRosseler
17
78 kgNys
19
73 kgD'Hollander
20
74 kgDockx
21
64 kg
1
82 kgvan Heeswijk
2
73 kgTjallingii
3
81 kgCooke
4
75 kgSteegmans
5
82 kgPérez
6
68 kgEeckhout
7
73 kgde Jongh
8
76 kgAmorison
10
70 kgSijmens
11
69 kgNeirynck
12
71 kgNuyens
13
68 kgVan den Broeck
14
69 kgRoelandts
15
78 kgVan Impe
16
75 kgRosseler
17
78 kgNys
19
73 kgD'Hollander
20
74 kgDockx
21
64 kg
Weight (KG) →
Result →
82
64
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | VAN HEESWIJK Max | 73 |
3 | TJALLINGII Maarten | 81 |
4 | COOKE Baden | 75 |
5 | STEEGMANS Gert | 82 |
6 | PÉREZ Marlon Alirio | 68 |
7 | EECKHOUT Niko | 73 |
8 | DE JONGH Steven | 76 |
10 | AMORISON Frédéric | 70 |
11 | SIJMENS Nico | 69 |
12 | NEIRYNCK Kevin | 71 |
13 | NUYENS Nick | 68 |
14 | VAN DEN BROECK Jurgen | 69 |
15 | ROELANDTS Jürgen | 78 |
16 | VAN IMPE Kevin | 75 |
17 | ROSSELER Sébastien | 78 |
19 | NYS Sven | 73 |
20 | D'HOLLANDER Glenn | 74 |
21 | DOCKX Bart | 64 |