Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Boonen
1
82 kgBos
2
77 kgVan Avermaet
3
74 kgSteegmans
4
82 kgTerpstra
5
75 kgVan Staeyen
6
62 kgAhlstrand
7
72 kgNapolitano
8
81 kgGreipel
9
80 kgGuardini
10
66 kgHushovd
11
83 kgGilbert
12
75 kgChicchi
13
76 kgVerhelst
14
71 kgSénéchal
15
77 kgLodewyck
17
70 kgBakelants
18
67 kg
1
82 kgBos
2
77 kgVan Avermaet
3
74 kgSteegmans
4
82 kgTerpstra
5
75 kgVan Staeyen
6
62 kgAhlstrand
7
72 kgNapolitano
8
81 kgGreipel
9
80 kgGuardini
10
66 kgHushovd
11
83 kgGilbert
12
75 kgChicchi
13
76 kgVerhelst
14
71 kgSénéchal
15
77 kgLodewyck
17
70 kgBakelants
18
67 kg
Weight (KG) →
Result →
83
62
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | BOS Theo | 77 |
3 | VAN AVERMAET Greg | 74 |
4 | STEEGMANS Gert | 82 |
5 | TERPSTRA Niki | 75 |
6 | VAN STAEYEN Michael | 62 |
7 | AHLSTRAND Jonas | 72 |
8 | NAPOLITANO Danilo | 81 |
9 | GREIPEL André | 80 |
10 | GUARDINI Andrea | 66 |
11 | HUSHOVD Thor | 83 |
12 | GILBERT Philippe | 75 |
13 | CHICCHI Francesco | 76 |
14 | VERHELST Louis | 71 |
15 | SÉNÉCHAL Florian | 77 |
17 | LODEWYCK Klaas | 70 |
18 | BAKELANTS Jan | 67 |