Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 11
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Boonen
1
82 kgDrucker
2
75 kgDémare
3
76 kgDebusschere
4
77 kgBrändle
5
80 kgLampaert
6
75 kgvan Genechten
7
67 kgDennis
8
72 kgGroenewegen
9
70 kgBille
10
67 kgElmiger
11
73 kgJans
12
68 kgVan Avermaet
13
74 kgVan Asbroeck
14
72 kgTsatevich
15
64 kgBonnet
16
80 kgVan Keirsbulck
17
89 kgBoucher
18
78 kg
1
82 kgDrucker
2
75 kgDémare
3
76 kgDebusschere
4
77 kgBrändle
5
80 kgLampaert
6
75 kgvan Genechten
7
67 kgDennis
8
72 kgGroenewegen
9
70 kgBille
10
67 kgElmiger
11
73 kgJans
12
68 kgVan Avermaet
13
74 kgVan Asbroeck
14
72 kgTsatevich
15
64 kgBonnet
16
80 kgVan Keirsbulck
17
89 kgBoucher
18
78 kg
Weight (KG) →
Result →
89
64
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | DRUCKER Jempy | 75 |
3 | DÉMARE Arnaud | 76 |
4 | DEBUSSCHERE Jens | 77 |
5 | BRÄNDLE Matthias | 80 |
6 | LAMPAERT Yves | 75 |
7 | VAN GENECHTEN Jonas | 67 |
8 | DENNIS Rohan | 72 |
9 | GROENEWEGEN Dylan | 70 |
10 | BILLE Gaëtan | 67 |
11 | ELMIGER Martin | 73 |
12 | JANS Roy | 68 |
13 | VAN AVERMAET Greg | 74 |
14 | VAN ASBROECK Tom | 72 |
15 | TSATEVICH Alexey | 64 |
16 | BONNET William | 80 |
17 | VAN KEIRSBULCK Guillaume | 89 |
18 | BOUCHER David | 78 |