Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Theuns
1
72 kgHollenstein
2
80 kgMcLay
3
72 kgDehaes
4
73 kgvan Aert
5
78 kgPlanckaert
6
65 kgMartin
7
75 kgDupont
8
72 kgvan Genechten
9
67 kgTerpstra
10
75 kgAhlstrand
11
72 kgLampaert
12
75 kgChicchi
13
76 kgElmiger
14
73 kgVanspeybrouck
15
76 kgBoom
16
75 kgBoucher
17
78 kgVan Hoecke
18
78 kgChavanel
19
73 kg
1
72 kgHollenstein
2
80 kgMcLay
3
72 kgDehaes
4
73 kgvan Aert
5
78 kgPlanckaert
6
65 kgMartin
7
75 kgDupont
8
72 kgvan Genechten
9
67 kgTerpstra
10
75 kgAhlstrand
11
72 kgLampaert
12
75 kgChicchi
13
76 kgElmiger
14
73 kgVanspeybrouck
15
76 kgBoom
16
75 kgBoucher
17
78 kgVan Hoecke
18
78 kgChavanel
19
73 kg
Weight (KG) →
Result →
80
65
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | THEUNS Edward | 72 |
2 | HOLLENSTEIN Reto | 80 |
3 | MCLAY Daniel | 72 |
4 | DEHAES Kenny | 73 |
5 | VAN AERT Wout | 78 |
6 | PLANCKAERT Baptiste | 65 |
7 | MARTIN Tony | 75 |
8 | DUPONT Timothy | 72 |
9 | VAN GENECHTEN Jonas | 67 |
10 | TERPSTRA Niki | 75 |
11 | AHLSTRAND Jonas | 72 |
12 | LAMPAERT Yves | 75 |
13 | CHICCHI Francesco | 76 |
14 | ELMIGER Martin | 73 |
15 | VANSPEYBROUCK Pieter | 76 |
16 | BOOM Lars | 75 |
17 | BOUCHER David | 78 |
18 | VAN HOECKE Gijs | 78 |
19 | CHAVANEL Sylvain | 73 |