Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Coquard
1
59 kgvan der Poel
2
75 kgGilbert
3
75 kgDebusschere
4
77 kgvan Aert
5
78 kgMcLay
6
72 kgNaesen
7
74 kgVan Asbroeck
8
72 kgPardini
9
68 kgJans
10
68 kgSénéchal
11
77 kgVan Lerberghe
12
83 kgBenoot
13
72 kgPlanckaert
14
65 kgMartin
15
75 kgVan Staeyen
16
62 kgVermote
17
74 kgDehaes
18
73 kgWynants
19
74 kgMarini
20
72 kg
1
59 kgvan der Poel
2
75 kgGilbert
3
75 kgDebusschere
4
77 kgvan Aert
5
78 kgMcLay
6
72 kgNaesen
7
74 kgVan Asbroeck
8
72 kgPardini
9
68 kgJans
10
68 kgSénéchal
11
77 kgVan Lerberghe
12
83 kgBenoot
13
72 kgPlanckaert
14
65 kgMartin
15
75 kgVan Staeyen
16
62 kgVermote
17
74 kgDehaes
18
73 kgWynants
19
74 kgMarini
20
72 kg
Weight (KG) →
Result →
83
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | COQUARD Bryan | 59 |
2 | VAN DER POEL Mathieu | 75 |
3 | GILBERT Philippe | 75 |
4 | DEBUSSCHERE Jens | 77 |
5 | VAN AERT Wout | 78 |
6 | MCLAY Daniel | 72 |
7 | NAESEN Oliver | 74 |
8 | VAN ASBROECK Tom | 72 |
9 | PARDINI Olivier | 68 |
10 | JANS Roy | 68 |
11 | SÉNÉCHAL Florian | 77 |
12 | VAN LERBERGHE Bert | 83 |
13 | BENOOT Tiesj | 72 |
14 | PLANCKAERT Baptiste | 65 |
15 | MARTIN Tony | 75 |
16 | VAN STAEYEN Michael | 62 |
17 | VERMOTE Julien | 74 |
18 | DEHAES Kenny | 73 |
19 | WYNANTS Maarten | 74 |
20 | MARINI Nicolas | 72 |