Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Jakobsen
1
78 kgMerlier
2
76 kgEvenepoel
3
61 kgTaminiaux
4
74 kgvan Schip
5
84 kgPhilipsen
6
75 kgVan Asbroeck
7
72 kgWellens
8
71 kgKirsch
9
78 kgVan Hooydonck
10
78 kgMartinelli
11
71 kgJans
12
68 kgCampenaerts
13
68 kgSoete
14
72 kgMullen
15
77 kgCoquard
16
59 kgMarit
17
72 kgLaporte
18
76 kgSerry
19
66 kgBarbier
20
79 kgBrändle
21
80 kgNorman Leth
22
75 kgTerpstra
23
75 kg
1
78 kgMerlier
2
76 kgEvenepoel
3
61 kgTaminiaux
4
74 kgvan Schip
5
84 kgPhilipsen
6
75 kgVan Asbroeck
7
72 kgWellens
8
71 kgKirsch
9
78 kgVan Hooydonck
10
78 kgMartinelli
11
71 kgJans
12
68 kgCampenaerts
13
68 kgSoete
14
72 kgMullen
15
77 kgCoquard
16
59 kgMarit
17
72 kgLaporte
18
76 kgSerry
19
66 kgBarbier
20
79 kgBrändle
21
80 kgNorman Leth
22
75 kgTerpstra
23
75 kg
Weight (KG) →
Result →
84
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | JAKOBSEN Fabio | 78 |
2 | MERLIER Tim | 76 |
3 | EVENEPOEL Remco | 61 |
4 | TAMINIAUX Lionel | 74 |
5 | VAN SCHIP Jan-Willem | 84 |
6 | PHILIPSEN Jasper | 75 |
7 | VAN ASBROECK Tom | 72 |
8 | WELLENS Tim | 71 |
9 | KIRSCH Alex | 78 |
10 | VAN HOOYDONCK Nathan | 78 |
11 | MARTINELLI Davide | 71 |
12 | JANS Roy | 68 |
13 | CAMPENAERTS Victor | 68 |
14 | SOETE Daan | 72 |
15 | MULLEN Ryan | 77 |
16 | COQUARD Bryan | 59 |
17 | MARIT Arne | 72 |
18 | LAPORTE Christophe | 76 |
19 | SERRY Pieter | 66 |
20 | BARBIER Rudy | 79 |
21 | BRÄNDLE Matthias | 80 |
22 | NORMAN LETH Lasse | 75 |
23 | TERPSTRA Niki | 75 |