Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Evenepoel
1
61 kgGhys
2
72 kgMarchand
3
61 kgPhilipsen
4
75 kgLampaert
5
75 kgDe Buyst
6
72 kgFisher-Black
7
69 kgAerts
8
72 kgHerregodts
9
70 kgSchelling
10
66 kgvan Poppel
11
78 kgFrison
12
84 kgCoquard
13
59 kgEenkhoorn
14
72 kgGuernalec
15
71 kgNorman Leth
16
75 kgBouwman
17
60 kgBallerini
18
71 kgSwift
19
75 kg
1
61 kgGhys
2
72 kgMarchand
3
61 kgPhilipsen
4
75 kgLampaert
5
75 kgDe Buyst
6
72 kgFisher-Black
7
69 kgAerts
8
72 kgHerregodts
9
70 kgSchelling
10
66 kgvan Poppel
11
78 kgFrison
12
84 kgCoquard
13
59 kgEenkhoorn
14
72 kgGuernalec
15
71 kgNorman Leth
16
75 kgBouwman
17
60 kgBallerini
18
71 kgSwift
19
75 kg
Weight (KG) →
Result →
84
59
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | GHYS Robbe | 72 |
3 | MARCHAND Gianni | 61 |
4 | PHILIPSEN Jasper | 75 |
5 | LAMPAERT Yves | 75 |
6 | DE BUYST Jasper | 72 |
7 | FISHER-BLACK Finn | 69 |
8 | AERTS Toon | 72 |
9 | HERREGODTS Rune | 70 |
10 | SCHELLING Ide | 66 |
11 | VAN POPPEL Boy | 78 |
12 | FRISON Frederik | 84 |
13 | COQUARD Bryan | 59 |
14 | EENKHOORN Pascal | 72 |
15 | GUERNALEC Thibault | 71 |
16 | NORMAN LETH Lasse | 75 |
17 | BOUWMAN Koen | 60 |
18 | BALLERINI Davide | 71 |
19 | SWIFT Connor | 75 |