Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Pedersen
1
76 kgPhilipsen
2
75 kgWellens
3
71 kgvan Poppel
4
82 kgDainese
5
70 kgHermans
6
62 kgDe Lie
7
78 kgGhys
8
72 kgWeemaes
9
73 kgRota
10
62 kgSénéchal
11
77 kgJakobsen
12
78 kgZingle
13
67 kgHofstetter
14
66 kgMertens
15
67 kgAniołkowski
16
68 kgThijssen
17
74 kg
1
76 kgPhilipsen
2
75 kgWellens
3
71 kgvan Poppel
4
82 kgDainese
5
70 kgHermans
6
62 kgDe Lie
7
78 kgGhys
8
72 kgWeemaes
9
73 kgRota
10
62 kgSénéchal
11
77 kgJakobsen
12
78 kgZingle
13
67 kgHofstetter
14
66 kgMertens
15
67 kgAniołkowski
16
68 kgThijssen
17
74 kg
Weight (KG) →
Result →
82
62
1
17
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | PEDERSEN Mads | 76 |
| 2 | PHILIPSEN Jasper | 75 |
| 3 | WELLENS Tim | 71 |
| 4 | VAN POPPEL Danny | 82 |
| 5 | DAINESE Alberto | 70 |
| 6 | HERMANS Quinten | 62 |
| 7 | DE LIE Arnaud | 78 |
| 8 | GHYS Robbe | 72 |
| 9 | WEEMAES Sasha | 73 |
| 10 | ROTA Lorenzo | 62 |
| 11 | SÉNÉCHAL Florian | 77 |
| 12 | JAKOBSEN Fabio | 78 |
| 13 | ZINGLE Axel | 67 |
| 14 | HOFSTETTER Hugo | 66 |
| 15 | MERTENS Julian | 67 |
| 16 | ANIOŁKOWSKI Stanisław | 68 |
| 17 | THIJSSEN Gerben | 74 |