Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Pedersen
1
76 kgPhilipsen
2
75 kgWellens
3
71 kgvan Poppel
4
82 kgDainese
5
70 kgHermans
6
62 kgDe Lie
7
78 kgGhys
8
72 kgWeemaes
9
73 kgRota
10
62 kgSénéchal
11
77 kgJakobsen
12
78 kgZingle
13
67 kgHofstetter
14
66 kgMertens
15
67 kgAniołkowski
16
68 kgThijssen
17
74 kg
1
76 kgPhilipsen
2
75 kgWellens
3
71 kgvan Poppel
4
82 kgDainese
5
70 kgHermans
6
62 kgDe Lie
7
78 kgGhys
8
72 kgWeemaes
9
73 kgRota
10
62 kgSénéchal
11
77 kgJakobsen
12
78 kgZingle
13
67 kgHofstetter
14
66 kgMertens
15
67 kgAniołkowski
16
68 kgThijssen
17
74 kg
Weight (KG) →
Result →
82
62
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | PHILIPSEN Jasper | 75 |
3 | WELLENS Tim | 71 |
4 | VAN POPPEL Danny | 82 |
5 | DAINESE Alberto | 70 |
6 | HERMANS Quinten | 62 |
7 | DE LIE Arnaud | 78 |
8 | GHYS Robbe | 72 |
9 | WEEMAES Sasha | 73 |
10 | ROTA Lorenzo | 62 |
11 | SÉNÉCHAL Florian | 77 |
12 | JAKOBSEN Fabio | 78 |
13 | ZINGLE Axel | 67 |
14 | HOFSTETTER Hugo | 66 |
15 | MERTENS Julian | 67 |
16 | ANIOŁKOWSKI Stanisław | 68 |
17 | THIJSSEN Gerben | 74 |