Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -16.7 * weight + 1305
This means that on average for every extra kilogram weight a rider loses -16.7 positions in the result.
Wærenskjold
1
92 kgMerlier
2
76 kgPhilipsen
3
75 kgKooij
4
72 kgBarbier
5
69 kgVacek
6
75 kgTaminiaux
7
74 kgHerregodts
8
70 kgTeunissen
9
73 kgAffini
10
80 kgSegaert
11
79 kgTheuns
12
72 kgThijssen
13
74 kgAsgreen
14
75 kgAranburu
16
63 kgStuyven
17
78 kgHoole
18
81 kgČerný
19
75 kgBerckmoes
991
61 kg
1
92 kgMerlier
2
76 kgPhilipsen
3
75 kgKooij
4
72 kgBarbier
5
69 kgVacek
6
75 kgTaminiaux
7
74 kgHerregodts
8
70 kgTeunissen
9
73 kgAffini
10
80 kgSegaert
11
79 kgTheuns
12
72 kgThijssen
13
74 kgAsgreen
14
75 kgAranburu
16
63 kgStuyven
17
78 kgHoole
18
81 kgČerný
19
75 kgBerckmoes
991
61 kg
Weight (KG) →
Result →
92
61
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | WÆRENSKJOLD Søren | 92 |
2 | MERLIER Tim | 76 |
3 | PHILIPSEN Jasper | 75 |
4 | KOOIJ Olav | 72 |
5 | BARBIER Pierre | 69 |
6 | VACEK Mathias | 75 |
7 | TAMINIAUX Lionel | 74 |
8 | HERREGODTS Rune | 70 |
9 | TEUNISSEN Mike | 73 |
10 | AFFINI Edoardo | 80 |
11 | SEGAERT Alec | 79 |
12 | THEUNS Edward | 72 |
13 | THIJSSEN Gerben | 74 |
14 | ASGREEN Kasper | 75 |
16 | ARANBURU Alex | 63 |
17 | STUYVEN Jasper | 78 |
18 | HOOLE Daan | 81 |
19 | ČERNÝ Josef | 75 |
991 | BERCKMOES Jenno | 61 |