Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -14.5 * weight + 1133
This means that on average for every extra kilogram weight a rider loses -14.5 positions in the result.
Philipsen
1
75 kgMerlier
2
76 kgKooij
3
72 kgWærenskjold
4
92 kgThijssen
5
74 kgTaminiaux
6
74 kgStuyven
7
78 kgBarbier
8
69 kgVacek
9
75 kgDegenkolb
10
82 kgHerregodts
11
70 kgTeunissen
12
73 kgAffini
13
80 kgMozzato
14
67 kgSegaert
15
79 kgTheuns
16
72 kgDupont
17
72 kgAsgreen
18
75 kgAranburu
21
63 kgHoole
22
81 kgČerný
23
75 kgBerckmoes
991
61 kg
1
75 kgMerlier
2
76 kgKooij
3
72 kgWærenskjold
4
92 kgThijssen
5
74 kgTaminiaux
6
74 kgStuyven
7
78 kgBarbier
8
69 kgVacek
9
75 kgDegenkolb
10
82 kgHerregodts
11
70 kgTeunissen
12
73 kgAffini
13
80 kgMozzato
14
67 kgSegaert
15
79 kgTheuns
16
72 kgDupont
17
72 kgAsgreen
18
75 kgAranburu
21
63 kgHoole
22
81 kgČerný
23
75 kgBerckmoes
991
61 kg
Weight (KG) →
Result →
92
61
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | MERLIER Tim | 76 |
3 | KOOIJ Olav | 72 |
4 | WÆRENSKJOLD Søren | 92 |
5 | THIJSSEN Gerben | 74 |
6 | TAMINIAUX Lionel | 74 |
7 | STUYVEN Jasper | 78 |
8 | BARBIER Pierre | 69 |
9 | VACEK Mathias | 75 |
10 | DEGENKOLB John | 82 |
11 | HERREGODTS Rune | 70 |
12 | TEUNISSEN Mike | 73 |
13 | AFFINI Edoardo | 80 |
14 | MOZZATO Luca | 67 |
15 | SEGAERT Alec | 79 |
16 | THEUNS Edward | 72 |
17 | DUPONT Timothy | 72 |
18 | ASGREEN Kasper | 75 |
21 | ARANBURU Alex | 63 |
22 | HOOLE Daan | 81 |
23 | ČERNÝ Josef | 75 |
991 | BERCKMOES Jenno | 61 |