Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Navardauskas
1
79 kgSchmid
2
70 kgSayar
3
64 kgBalkan
8
64 kgKüçükbay
14
70 kgTiryaki
15
67 kgAnsons
16
77 kgRojus
28
83 kgBeniušis
29
85 kgJawad
30
58 kgChtioui
31
82 kgFitzpatrick
36
68 kgNouisri
37
74 kgÖzgür
42
75 kgJanuškevičius
49
72 kgPinar
61
69 kgTaskan
76
65 kg
1
79 kgSchmid
2
70 kgSayar
3
64 kgBalkan
8
64 kgKüçükbay
14
70 kgTiryaki
15
67 kgAnsons
16
77 kgRojus
28
83 kgBeniušis
29
85 kgJawad
30
58 kgChtioui
31
82 kgFitzpatrick
36
68 kgNouisri
37
74 kgÖzgür
42
75 kgJanuškevičius
49
72 kgPinar
61
69 kgTaskan
76
65 kg
Weight (KG) →
Result →
85
58
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | NAVARDAUSKAS Ramūnas | 79 |
2 | SCHMID Mauro | 70 |
3 | SAYAR Mustafa | 64 |
8 | BALKAN Serkan | 64 |
14 | KÜÇÜKBAY Kemal | 70 |
15 | TIRYAKI Oguzhan | 67 |
16 | ANSONS Kristers | 77 |
28 | ROJUS Adomaitis | 83 |
29 | BENIUŠIS Justas | 85 |
30 | JAWAD Mansoor | 58 |
31 | CHTIOUI Rafaâ | 82 |
36 | FITZPATRICK Tom | 68 |
37 | NOUISRI Ali | 74 |
42 | ÖZGÜR Batuhan | 75 |
49 | JANUŠKEVIČIUS Mantas | 72 |
61 | PINAR Timur | 69 |
76 | TASKAN Oguzhan | 65 |