Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 98
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Özgür
2
75 kgNouisri
3
74 kgKüçükbay
7
70 kgRojus
10
83 kgSchmid
14
70 kgNavardauskas
18
79 kgJanuškevičius
19
72 kgSayar
22
64 kgTiryaki
23
67 kgAnsons
33
77 kgChtioui
51
82 kgJawad
52
58 kgBeniušis
56
85 kgBalkan
60
64 kgPinar
65
69 kgTaskan
71
65 kgFitzpatrick
73
68 kg
2
75 kgNouisri
3
74 kgKüçükbay
7
70 kgRojus
10
83 kgSchmid
14
70 kgNavardauskas
18
79 kgJanuškevičius
19
72 kgSayar
22
64 kgTiryaki
23
67 kgAnsons
33
77 kgChtioui
51
82 kgJawad
52
58 kgBeniušis
56
85 kgBalkan
60
64 kgPinar
65
69 kgTaskan
71
65 kgFitzpatrick
73
68 kg
Weight (KG) →
Result →
85
58
2
73
# | Rider | Weight (KG) |
---|---|---|
2 | ÖZGÜR Batuhan | 75 |
3 | NOUISRI Ali | 74 |
7 | KÜÇÜKBAY Kemal | 70 |
10 | ROJUS Adomaitis | 83 |
14 | SCHMID Mauro | 70 |
18 | NAVARDAUSKAS Ramūnas | 79 |
19 | JANUŠKEVIČIUS Mantas | 72 |
22 | SAYAR Mustafa | 64 |
23 | TIRYAKI Oguzhan | 67 |
33 | ANSONS Kristers | 77 |
51 | CHTIOUI Rafaâ | 82 |
52 | JAWAD Mansoor | 58 |
56 | BENIUŠIS Justas | 85 |
60 | BALKAN Serkan | 64 |
65 | PINAR Timur | 69 |
71 | TASKAN Oguzhan | 65 |
73 | FITZPATRICK Tom | 68 |