Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 111
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Özgür
1
75 kgNouisri
5
74 kgNavardauskas
7
79 kgTiryaki
9
67 kgRojus
11
83 kgBeniušis
13
85 kgKüçükbay
18
70 kgBalkan
23
64 kgSayar
24
64 kgAnsons
28
77 kgJanuškevičius
34
72 kgSchmid
39
70 kgJawad
49
58 kgFitzpatrick
55
68 kgChtioui
59
82 kgPinar
60
69 kgTaskan
77
65 kg
1
75 kgNouisri
5
74 kgNavardauskas
7
79 kgTiryaki
9
67 kgRojus
11
83 kgBeniušis
13
85 kgKüçükbay
18
70 kgBalkan
23
64 kgSayar
24
64 kgAnsons
28
77 kgJanuškevičius
34
72 kgSchmid
39
70 kgJawad
49
58 kgFitzpatrick
55
68 kgChtioui
59
82 kgPinar
60
69 kgTaskan
77
65 kg
Weight (KG) →
Result →
85
58
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | ÖZGÜR Batuhan | 75 |
5 | NOUISRI Ali | 74 |
7 | NAVARDAUSKAS Ramūnas | 79 |
9 | TIRYAKI Oguzhan | 67 |
11 | ROJUS Adomaitis | 83 |
13 | BENIUŠIS Justas | 85 |
18 | KÜÇÜKBAY Kemal | 70 |
23 | BALKAN Serkan | 64 |
24 | SAYAR Mustafa | 64 |
28 | ANSONS Kristers | 77 |
34 | JANUŠKEVIČIUS Mantas | 72 |
39 | SCHMID Mauro | 70 |
49 | JAWAD Mansoor | 58 |
55 | FITZPATRICK Tom | 68 |
59 | CHTIOUI Rafaâ | 82 |
60 | PINAR Timur | 69 |
77 | TASKAN Oguzhan | 65 |