Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Mizbani
1
67 kgAskari
4
73 kgEarle
5
70 kgEbsen
6
58 kgCrawford
7
59 kgGaledo
10
58 kgWijaya
24
58 kgFelipe
25
58 kgGoh
31
54 kgMat Amin
32
54 kgJawad
33
58 kgOranza
36
67 kgCariño
37
54 kgSai-udomsin
42
60 kgHuang
44
55 kgIrawan
47
51 kgPeng
48
65 kgZulkifli
50
65 kgSohrabi
53
69 kg
1
67 kgAskari
4
73 kgEarle
5
70 kgEbsen
6
58 kgCrawford
7
59 kgGaledo
10
58 kgWijaya
24
58 kgFelipe
25
58 kgGoh
31
54 kgMat Amin
32
54 kgJawad
33
58 kgOranza
36
67 kgCariño
37
54 kgSai-udomsin
42
60 kgHuang
44
55 kgIrawan
47
51 kgPeng
48
65 kgZulkifli
50
65 kgSohrabi
53
69 kg
Weight (KG) →
Result →
73
51
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | MIZBANI Ghader | 67 |
4 | ASKARI Hossein | 73 |
5 | EARLE Nathan | 70 |
6 | EBSEN John | 58 |
7 | CRAWFORD Jai | 59 |
10 | GALEDO Mark John Lexer | 58 |
24 | WIJAYA Endra | 58 |
25 | FELIPE Marcelo | 58 |
31 | GOH Choon Huat | 54 |
32 | MAT AMIN Mohd Shahrul | 54 |
33 | JAWAD Mansoor | 58 |
36 | ORANZA Ronald | 67 |
37 | CARIÑO El Joshua | 54 |
42 | SAI-UDOMSIN Phuchong | 60 |
44 | HUANG Wen Chung | 55 |
47 | IRAWAN Jefri | 51 |
48 | PENG Yuan Tang | 65 |
50 | ZULKIFLI Nik Mohamad Azman | 65 |
53 | SOHRABI Mehdi | 69 |