Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 113
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Saleh
1
70 kgSaleh
3
58 kgSohrabi
4
69 kgSai-udomsin
10
60 kgPriya Prasetya
11
62 kgZulkifli
12
65 kgPeng
13
65 kgJawad
30
58 kgCrawford
37
59 kgWijaya
38
58 kgOranza
41
67 kgCariño
42
54 kgEarle
44
70 kgIrawan
48
51 kgGoh
53
54 kgGaledo
55
58 kgEbsen
56
58 kgAskari
69
73 kgHuang
71
55 kgMizbani
73
67 kgMat Amin
78
54 kgFelipe
86
58 kg
1
70 kgSaleh
3
58 kgSohrabi
4
69 kgSai-udomsin
10
60 kgPriya Prasetya
11
62 kgZulkifli
12
65 kgPeng
13
65 kgJawad
30
58 kgCrawford
37
59 kgWijaya
38
58 kgOranza
41
67 kgCariño
42
54 kgEarle
44
70 kgIrawan
48
51 kgGoh
53
54 kgGaledo
55
58 kgEbsen
56
58 kgAskari
69
73 kgHuang
71
55 kgMizbani
73
67 kgMat Amin
78
54 kgFelipe
86
58 kg
Weight (KG) →
Result →
73
51
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | SALEH Mohd Harrif | 70 |
3 | SALEH Mohd Zamri | 58 |
4 | SOHRABI Mehdi | 69 |
10 | SAI-UDOMSIN Phuchong | 60 |
11 | PRIYA PRASETYA Heksa | 62 |
12 | ZULKIFLI Nik Mohamad Azman | 65 |
13 | PENG Yuan Tang | 65 |
30 | JAWAD Mansoor | 58 |
37 | CRAWFORD Jai | 59 |
38 | WIJAYA Endra | 58 |
41 | ORANZA Ronald | 67 |
42 | CARIÑO El Joshua | 54 |
44 | EARLE Nathan | 70 |
48 | IRAWAN Jefri | 51 |
53 | GOH Choon Huat | 54 |
55 | GALEDO Mark John Lexer | 58 |
56 | EBSEN John | 58 |
69 | ASKARI Hossein | 73 |
71 | HUANG Wen Chung | 55 |
73 | MIZBANI Ghader | 67 |
78 | MAT AMIN Mohd Shahrul | 54 |
86 | FELIPE Marcelo | 58 |