Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 587
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Fondriest
1
70 kgSunderland
2
65 kgEkimov
3
69 kgGontchenkov
5
74 kgSwart
6
74 kgMuseeuw
7
71 kgSvorada
9
76 kgSciandri
10
75 kgVeenstra
990
70 kgElliott
990
76 kgTchmil
990
75 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
1
70 kgSunderland
2
65 kgEkimov
3
69 kgGontchenkov
5
74 kgSwart
6
74 kgMuseeuw
7
71 kgSvorada
9
76 kgSciandri
10
75 kgVeenstra
990
70 kgElliott
990
76 kgTchmil
990
75 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | FONDRIEST Maurizio | 70 |
2 | SUNDERLAND Scott | 65 |
3 | EKIMOV Viatcheslav | 69 |
5 | GONTCHENKOV Alexander | 74 |
6 | SWART Steve | 74 |
7 | MUSEEUW Johan | 71 |
9 | SVORADA Ján | 76 |
10 | SCIANDRI Maximilian | 75 |
990 | VEENSTRA Wiebren | 70 |
990 | ELLIOTT Malcolm | 76 |
990 | TCHMIL Andrei | 75 |
990 | SPRUCH Zbigniew | 68 |
990 | LEYSEN Bart | 75 |
990 | SKIBBY Jesper | 70 |
990 | ZABEL Erik | 69 |
990 | ANDREU Frankie | 77 |
990 | ALDAG Rolf | 75 |
990 | YATES Sean | 74 |
990 | HAMBURGER Bo | 58 |
990 | SERPELLINI Marco | 75 |
990 | DEN BAKKER Maarten | 71 |