Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -17.8 * weight + 2106
This means that on average for every extra kilogram weight a rider loses -17.8 positions in the result.
Veenstra
1
70 kgSvorada
3
76 kgElliott
4
76 kgFondriest
990
70 kgSunderland
990
65 kgEkimov
990
69 kgGontchenkov
990
74 kgSwart
990
74 kgTchmil
990
75 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
1
70 kgSvorada
3
76 kgElliott
4
76 kgFondriest
990
70 kgSunderland
990
65 kgEkimov
990
69 kgGontchenkov
990
74 kgSwart
990
74 kgTchmil
990
75 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | VEENSTRA Wiebren | 70 |
3 | SVORADA Ján | 76 |
4 | ELLIOTT Malcolm | 76 |
990 | FONDRIEST Maurizio | 70 |
990 | SUNDERLAND Scott | 65 |
990 | EKIMOV Viatcheslav | 69 |
990 | GONTCHENKOV Alexander | 74 |
990 | SWART Steve | 74 |
990 | TCHMIL Andrei | 75 |
990 | SPRUCH Zbigniew | 68 |
990 | LEYSEN Bart | 75 |
990 | SKIBBY Jesper | 70 |
990 | ZABEL Erik | 69 |
990 | ANDREU Frankie | 77 |
990 | ALDAG Rolf | 75 |
990 | YATES Sean | 74 |
990 | HAMBURGER Bo | 58 |
990 | SERPELLINI Marco | 75 |
990 | DEN BAKKER Maarten | 71 |