Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -41.4 * weight + 3544
This means that on average for every extra kilogram weight a rider loses -41.4 positions in the result.
Fondriest
1
70 kgEkimov
2
69 kgYates
4
74 kgAldag
5
75 kgSvorada
6
76 kgAndreu
9
77 kgTchmil
10
75 kgSunderland
990
65 kgGontchenkov
990
74 kgSwart
990
74 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
1
70 kgEkimov
2
69 kgYates
4
74 kgAldag
5
75 kgSvorada
6
76 kgAndreu
9
77 kgTchmil
10
75 kgSunderland
990
65 kgGontchenkov
990
74 kgSwart
990
74 kgSpruch
990
68 kgLeysen
990
75 kgSkibby
990
70 kgZabel
990
69 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | FONDRIEST Maurizio | 70 |
2 | EKIMOV Viatcheslav | 69 |
4 | YATES Sean | 74 |
5 | ALDAG Rolf | 75 |
6 | SVORADA Ján | 76 |
9 | ANDREU Frankie | 77 |
10 | TCHMIL Andrei | 75 |
990 | SUNDERLAND Scott | 65 |
990 | GONTCHENKOV Alexander | 74 |
990 | SWART Steve | 74 |
990 | SPRUCH Zbigniew | 68 |
990 | LEYSEN Bart | 75 |
990 | SKIBBY Jesper | 70 |
990 | ZABEL Erik | 69 |
990 | HAMBURGER Bo | 58 |
990 | SERPELLINI Marco | 75 |
990 | DEN BAKKER Maarten | 71 |