Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -5.6 * weight + 1160
This means that on average for every extra kilogram weight a rider loses -5.6 positions in the result.
Tchmil
1
75 kgSpruch
3
68 kgLeysen
4
75 kgSkibby
5
70 kgFondriest
990
70 kgSunderland
990
65 kgEkimov
990
69 kgGontchenkov
990
74 kgSwart
990
74 kgSvorada
990
76 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
1
75 kgSpruch
3
68 kgLeysen
4
75 kgSkibby
5
70 kgFondriest
990
70 kgSunderland
990
65 kgEkimov
990
69 kgGontchenkov
990
74 kgSwart
990
74 kgSvorada
990
76 kgZabel
990
69 kgAndreu
990
77 kgAldag
990
75 kgYates
990
74 kgHamburger
990
58 kgSerpellini
990
75 kgden Bakker
990
71 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | TCHMIL Andrei | 75 |
3 | SPRUCH Zbigniew | 68 |
4 | LEYSEN Bart | 75 |
5 | SKIBBY Jesper | 70 |
990 | FONDRIEST Maurizio | 70 |
990 | SUNDERLAND Scott | 65 |
990 | EKIMOV Viatcheslav | 69 |
990 | GONTCHENKOV Alexander | 74 |
990 | SWART Steve | 74 |
990 | SVORADA Ján | 76 |
990 | ZABEL Erik | 69 |
990 | ANDREU Frankie | 77 |
990 | ALDAG Rolf | 75 |
990 | YATES Sean | 74 |
990 | HAMBURGER Bo | 58 |
990 | SERPELLINI Marco | 75 |
990 | DEN BAKKER Maarten | 71 |